Mathematical Strategies for Climate and Long Range Weather Forecasting in Hierarchy of Models: Mathematics of Planet Earth, cartea XXX
Autor Andrew Majdaen Limba Engleză Hardback – 14 mai 2019
Din seria Mathematics of Planet Earth
- Preț: 328.69 lei
- Preț: 370.36 lei
- Preț: 435.04 lei
- Preț: 381.87 lei
- Preț: 381.87 lei
- Preț: 169.56 lei
- Preț: 372.19 lei
- 24% Preț: 756.22 lei
- Preț: 350.09 lei
- Preț: 351.00 lei
- 18% Preț: 714.54 lei
- 18% Preț: 766.03 lei
- 18% Preț: 930.00 lei
- 15% Preț: 633.06 lei
- 15% Preț: 682.90 lei
- 15% Preț: 629.19 lei
- 18% Preț: 880.49 lei
Preț: 429.26 lei
Preț vechi: 602.13 lei
-29% Nou
Puncte Express: 644
Preț estimativ în valută:
82.18€ • 85.42$ • 68.13£
82.18€ • 85.42$ • 68.13£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319223261
ISBN-10: 3319223267
Pagini: 300
Ilustrații: Bibliographie
Dimensiuni: 155 x 235 mm
Ediția:1st ed. 2019
Editura: Springer
Colecția Springer
Seria Mathematics of Planet Earth
Locul publicării:Cham, Switzerland
ISBN-10: 3319223267
Pagini: 300
Ilustrații: Bibliographie
Dimensiuni: 155 x 235 mm
Ediția:1st ed. 2019
Editura: Springer
Colecția Springer
Seria Mathematics of Planet Earth
Locul publicării:Cham, Switzerland
Public țintă
GraduateCuprins
Overview
and
Interdisciplinary
Mathematical
Geoscience
Perspective
on
Climate
and
Longe
Range
Weather
Forcasting
(Majda).-
Novel
Nonlinear
Time-Series
Techniques
to
Capture
both
Intermittency
and
Low-Frequency
Variability
(Giannakis
and
Majda).-
Predictions,
Observations,
and
Simplified
Models
for
Tropical
Intraseasonal
Variability
(Majda
and
Stechmann).-
Mathematical
Strategy
for
Prediction
with
Low-Order
Models
(Giannakis,
Harlim
and
Majda).-
Model
Errors
and
Information
Barriers
for
Data
Assimilation
and
Low-Order
Prediction
(Majda
and
Harlim).
Notă biografică
Andrew
J.
Majdais
the
Morse
Professor
of
Arts
and
Sciences
at
the
Courant
Institute
of
New
York
University.
Textul de pe ultima copertă
This
book
gives
a
research
exposition
of
interdisciplinary
topics
at
the
cutting
edge
of
the
applied
mathematics
of
climate
change
and
long
range
weather
forecasting
through
a
hierarchy
of
models
with
contemporary
applications
to
grand
challenges
such
as
intraseasonal
weather
prediction.
The
developments
include
recent
physics
constrained
low-order
models,
new
analog
prediction
models,
and
equation
free
methods
to
capture
intermittency
and
low
frequency
variabilities
in
massive
datasets
through
Nonlinear
Laplacian
Spectral
Analysis
(NLSA)
which
combines
delayed
embeddings,
causal
constraints,
and
machine
learning.
Applications
to
grand
challenges
such
as
tropical
intraseasonal
variability
of
the
Madden-Julian
Oscillation
(MJO)
and
the
Monsoon
as
well
as
sea
ice
re-emergence
in
the
Arctic
on
yearly
time
scales.
A
highlight
is
the
exposition
and
pedagogical
development
of
recent
intermediate
stochastic
skeleton
models
to
capture
the
main
features
of
the
MJO
through
PDE
ideas,
stochastics,
and
physical
reasoning
and
compared
with
observational
data.
The
mathematical
theory
of
model
error
and
the
use
of
information
theory
combined
with
linear
statistical
response
theory
in
a
calibration
stage
are
applied
to
improve
long
range
forecasting
and
multi-scale
data
assimilation
with
concrete
examples.
Caracteristici
First
book
of
its
kind
blending
mathematics
and
geoscience on
long
range
weather
prediction,
a
topic
of
great
practical
interest
Five main themes split into several chapters
Includes recent models and methods
Five main themes split into several chapters
Includes recent models and methods