Mathematical Tools for Applied Multivariate Analysis
Autor J. Douglas Carroll, Paul Green Editat de Anil Chaturvedien Limba Engleză Paperback – 19 oct 1997
- Provides a technical base for tackling most applications-oriented multivariate texts
- Presents a geometric perspective for aiding ones intuitive grasp of multivariate methods
- Emphasizes technical terms current in the social and behavioral sciences, statistics, and mathematics
- Can be used either as a stand-alone text or a supplement to a multivariate statistics textbook
- Employs many pictures and diagrams to convey an intuitive perception of matrix algebra concepts
- Toy problems provide a step-by-step approach to each model and matrix algebra concept
- Provides solutions for all exercises
Preț: 367.78 lei
Preț vechi: 399.77 lei
-8% Nou
Puncte Express: 552
Preț estimativ în valută:
70.42€ • 73.33$ • 58.43£
70.42€ • 73.33$ • 58.43£
Carte tipărită la comandă
Livrare economică 06-20 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780121609559
ISBN-10: 0121609553
Pagini: 376
Dimensiuni: 152 x 229 x 24 mm
Greutate: 0.57 kg
Ediția:Revised
Editura: ELSEVIER SCIENCE
ISBN-10: 0121609553
Pagini: 376
Dimensiuni: 152 x 229 x 24 mm
Greutate: 0.57 kg
Ediția:Revised
Editura: ELSEVIER SCIENCE
Public țintă
Undergraduate and graduate-level courses in quantitative methods and applied multivariate analysis. These courses include: applied multivariate analysis in statistics departments, introductory applied statistics and statisticaltechniques in psychology departments, sociological research in sociology departments, social statistics and marketing information in marketing departments, and mathematics for economists in economics departments.Cuprins
The Nature of Multivariate Data Analysis.
Vector and Matrix Operations for Multivariate Analysis.
Vector and Matrix Concepts from a Geometric Viewpoint.
Linear Transformations from a Geometric Viewpoint.
Decomposition of Matrix Transformations: Eigenstructures and Quadratic Forms.
Applying the Tools to Multivariate Data.
Appendix A: Symbolic Differentiation and Optimization of Multivariable Functions.
Appendix B: Linear Equations and Generalized Inverses.
Answers to Numerical Problems.
References.
Index.
Vector and Matrix Operations for Multivariate Analysis.
Vector and Matrix Concepts from a Geometric Viewpoint.
Linear Transformations from a Geometric Viewpoint.
Decomposition of Matrix Transformations: Eigenstructures and Quadratic Forms.
Applying the Tools to Multivariate Data.
Appendix A: Symbolic Differentiation and Optimization of Multivariable Functions.
Appendix B: Linear Equations and Generalized Inverses.
Answers to Numerical Problems.
References.
Index.
Recenzii
"This revision includes an update of terminology and basic mathematical concepts necessitated by the increasing use of multivariate techniques in a wide range of applied fields. It is highly recommended as a companion text for courses in multivariate methods and theory." --JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
"[The book's] approach is unique and should be an interesting and effective way to learn basic linear algebra, even for some who are primarily interested in linear algebra for its own sake." --CHOICE
"It provides a careful and thorough introduction to vectors and matrices. Especially valuable is the material providing geometric interpretations...A particular strength of the book is the frequent use of small numerical examples which, for example, actually demonstrate the useful properties of determinants, and make absolutely clear what is meant by operations like the multiplication of matrices. The book is designed for readers who have no prior knowledge of matrix theory, and specifically for students in the behavioural and administrative sciences. However, it is also very clear and useful that it has material of value to anyone using multivariate methods. It should be on the reading list for all courses on multivariate analysis." --B.J.T. Morgan, Univeristy of Kent, Canterbury, U.K. in SHORT BOOK REVIEWS, December 1998
"[The book's] approach is unique and should be an interesting and effective way to learn basic linear algebra, even for some who are primarily interested in linear algebra for its own sake." --CHOICE
"It provides a careful and thorough introduction to vectors and matrices. Especially valuable is the material providing geometric interpretations...A particular strength of the book is the frequent use of small numerical examples which, for example, actually demonstrate the useful properties of determinants, and make absolutely clear what is meant by operations like the multiplication of matrices. The book is designed for readers who have no prior knowledge of matrix theory, and specifically for students in the behavioural and administrative sciences. However, it is also very clear and useful that it has material of value to anyone using multivariate methods. It should be on the reading list for all courses on multivariate analysis." --B.J.T. Morgan, Univeristy of Kent, Canterbury, U.K. in SHORT BOOK REVIEWS, December 1998