Mathematics for Chemists
Autor P. G. Francisen Limba Engleză Paperback – 8 oct 2011
Preț: 378.04 lei
Nou
Puncte Express: 567
Preț estimativ în valută:
72.40€ • 74.59$ • 60.65£
72.40€ • 74.59$ • 60.65£
Carte tipărită la comandă
Livrare economică 22 februarie-08 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401089500
ISBN-10: 9401089507
Pagini: 208
Ilustrații: X, 196 p.
Dimensiuni: 140 x 216 x 11 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401089507
Pagini: 208
Ilustrații: X, 196 p.
Dimensiuni: 140 x 216 x 11 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Algebraic and geometrical methods.- 1.1 Natural numbers.- 1.2 Units and dimensional analysis.- 1.3 Functional notation.- 1.4 Quadratic and higher-order equations.- 1.5 Dependent and independent variables.- 1.6 Graphical methods.- 1.7 Some geometrical methods.- 1.8 Factorials and gamma functions.- 1.9 Probability.- 1.10 Complex numbers.- 2 Differential calculus.- 2.1 Significance and notation.- 2.2 The calculus limit.- 2.3 Differentiation of simple functions.- 2.4 The use of differentials; implicit differentiation.- 2.5 Logarithms and exponentials.- 2.6 The chain rule and differentiation by substitution.- 2.7 Turning points: maxima, minima and points of inflection.- 2.8 Maxima and minima subject to constraint; Lagrange’s method of undetermined multipliers.- 2.9 Series.- 2.10 The evaluation of limits by L’Hôpital’s rule.- 2.11 The principles of Newtonian mechanics.- 3 Differential calculus in three or more dimensions; partial differentiation.- 3.1 Significance and notation.- 3.2 An alternative approach to calculus.- 3.3 The total differential.- 3.4 General expression for a total differential.- 3.5 Exact differentials.- 3.6 Relations between partial derivatives.- 3.7 Extensive and intensive variables; Euler’s theorem.- 3.8 Taylor’s theorem in partial derivatives.- 3.9 Vectors.- 4 Integration.- 4.1 Significance and notation.- 4.2 Standard methods of integration.- 4.3 Standard forms of integral and numerical methods.- 4.4 Multiple integration.- 4.5 Differentiation of integrals; Leibnitz’s theorem.- 4.6 The Euler—Maclaurin Theorem.- 5 Applications of integration.- 5.1 Plane area.- 5.2 Plane elements of area.- 5.3 Elements of volume; polar coordinates in three dimensions.- 5.4 Line integrals.- 5.5 Curve length by integration.- 5.6 Applications of multipleintegration.- 5.7 The calculus of variations.- 5.8 Generalized dynamics.- 6 Differential equations.- 6.1 Significance and notation.- 6.2 Equations of first order, first degree.- 6.3 Linear differential equations.- 6.4 Integral transforms.- 7 Experimental error and the method of least squares.- 7.1 Significance.- 7.2 Root-mean-square error.- 7.3 Distribution of error.- 7.4 The statistical analysis of experimental data.- 7.5 Propagation of error.- 7.6 Small-sample errors.- 7.7 The normal distribution of error.- 7.8 The method of least squares.- Appendix SI units, physical constants and conversion factors; the Greek alphabet and a summary of useful relations.- Index..