Mathematics for Economics, fourth edition
Autor John Livernois, Michael Hoyen Limba Engleză Hardback – 28 mar 2022
Preț: 738.17 lei
Preț vechi: 900.21 lei
-18% Nou
Puncte Express: 1107
Preț estimativ în valută:
141.28€ • 149.04$ • 117.73£
141.28€ • 149.04$ • 117.73£
Carte disponibilă
Livrare economică 12-26 decembrie
Livrare express 27 noiembrie-03 decembrie pentru 85.37 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780262046626
ISBN-10: 0262046628
Pagini: 936
Ilustrații: 308 figures
Dimensiuni: 213 x 236 x 47 mm
Greutate: 1.97 kg
Editura: MIT Press Ltd
ISBN-10: 0262046628
Pagini: 936
Ilustrații: 308 figures
Dimensiuni: 213 x 236 x 47 mm
Greutate: 1.97 kg
Editura: MIT Press Ltd
Cuprins
Preface xiii
Glossary of Worked Examples xv
Part I Introduction of Fundamentals
Chapter 1
Introduction 3
Chapter 2
Review of the Fundamentals 19
Chapter 3
Sequences, Series, and Limits 75
Part II Univariate Calculus and Optimization
Chapter 4
Continuity of Functions 119
Chapter 5
The Derivative and Differential of Functions of One Variable 145
Chapter 6
Optimization of Functions of One Variable 225
Part III Linear Algebra
Chapter 7
Linear Equations and Vector Spaces 287
Chapter 8
Matrices 333
Chapter 9
Determinants and the Inverse Matrix 365
Chapter 10
Further Topics in Linear Algebra 407
Part IV Multivariate Calculus
Chapter 11
Calculus for Functions of n Variables 443
Chapter 12
Optimization of Functions of n Variables 519
Chapter 13
Constrained Optimization 551
Chapter 14
Comparative Statics 597
Chapter 15
Nonlinear Programming and the Kuhn-Tucker Conditions 635
Part V Integration and Dynamic Methods
Chapter 16
Integration 681
Chapter 17
An Introduction to Mathematics for Economic Dynamics 731
Chapter 18
Linear, First-Order Difference Equations 743
Chapter 19
Nonlinear, First-Order Difference Equations 767
Chapter 20
Linear, Second-Order Difference Equations 783
Chapter 21
Linear, First-Order Differential Equations 817
Chapter 22
Nonlinear, First-Order Differential Equations 843
Chapter 23
Linear, Second-Order Differential Equations 857
Chapter 23
Simultaneous Systems of Differential and Difference Equations 885
Chapter 25
Optimal Control Theory 949
References and Further Reading 1025
Answers 1027
Index 1061
Glossary of Worked Examples xv
Part I Introduction of Fundamentals
Chapter 1
Introduction 3
Chapter 2
Review of the Fundamentals 19
Chapter 3
Sequences, Series, and Limits 75
Part II Univariate Calculus and Optimization
Chapter 4
Continuity of Functions 119
Chapter 5
The Derivative and Differential of Functions of One Variable 145
Chapter 6
Optimization of Functions of One Variable 225
Part III Linear Algebra
Chapter 7
Linear Equations and Vector Spaces 287
Chapter 8
Matrices 333
Chapter 9
Determinants and the Inverse Matrix 365
Chapter 10
Further Topics in Linear Algebra 407
Part IV Multivariate Calculus
Chapter 11
Calculus for Functions of n Variables 443
Chapter 12
Optimization of Functions of n Variables 519
Chapter 13
Constrained Optimization 551
Chapter 14
Comparative Statics 597
Chapter 15
Nonlinear Programming and the Kuhn-Tucker Conditions 635
Part V Integration and Dynamic Methods
Chapter 16
Integration 681
Chapter 17
An Introduction to Mathematics for Economic Dynamics 731
Chapter 18
Linear, First-Order Difference Equations 743
Chapter 19
Nonlinear, First-Order Difference Equations 767
Chapter 20
Linear, Second-Order Difference Equations 783
Chapter 21
Linear, First-Order Differential Equations 817
Chapter 22
Nonlinear, First-Order Differential Equations 843
Chapter 23
Linear, Second-Order Differential Equations 857
Chapter 23
Simultaneous Systems of Differential and Difference Equations 885
Chapter 25
Optimal Control Theory 949
References and Further Reading 1025
Answers 1027
Index 1061
Notă biografică
Michael Hoy, John Livernois, Chris McKenna, Ray Rees, and Thanasis Stengos