Cantitate/Preț
Produs

Mathematik für Informatik und Data Science: Eine fundierte Einführung in Logik, Analysis, Lineare Algebra und Stochastik für Künstliche Intelligenz und Maschinelles Lernen: Studienbücher Informatik

Autor Andreas Knoblauch
de Limba Germană Paperback – 16 sep 2024
Dieses Buch liefert eine kompakte aber fundierte Darstellung der wichtigsten Gebiete der Mathematik für Informatik, die insbesondere für Data Science, Künstliche Intelligenz und Maschinelles Lernen notwendig sind. Inhaltlich gehören dazu Grundlagen zu Logik und Beweisen, ein- und mehrdimensionale Analysis mit Differential- und Integralrechnung, Lineare Algebra mit Vektor- und Matrixrechnung, linearen Gleichungssystemen, Koordinatentransformationen, Eigenvektoren sowie Wahrscheinlichkeitsrechnung mit Grundlagen der Kombinatorik, Statistik und Informationstheorie. Trotz der kompakten Darstellung werden alle Konzepte und Sätze sorgfältig eingeführt und bewiesen. Nichts soll vom Himmel fallen, sondern aus Axiomen und elementaren Prinzipien hergeleitet werden. Ziel ist es beim Studierenden das befriedigende Gefühl zu erzeugen, alles von Grund auf verstanden zu haben, und nichts nur „glauben“ zu müssen.
Citește tot Restrânge

Din seria Studienbücher Informatik

Preț: 26025 lei

Preț vechi: 32532 lei
-20% Nou

Puncte Express: 390

Preț estimativ în valută:
4980 5239$ 4123£

Carte nepublicată încă

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662694787
ISBN-10: 3662694786
Pagini: 400
Ilustrații: Etwa 400 S. 50 Abb.
Dimensiuni: 168 x 240 mm
Ediția:2024
Editura: Springer Berlin, Heidelberg
Colecția Springer Vieweg
Seria Studienbücher Informatik

Locul publicării:Berlin, Heidelberg, Germany

Cuprins

1. Mathematische und logische Grundlagen.- 2. Rechnen in Körpern.- 3. Grenzwerte von Folgen und Reihen.- 4. Rationale Funktionen und Stetigkeit.- 5. Differentialrechnung.- 6. Integration.- 7. Die komplexe Exponentialfunktion und die trigonometrischen Funktionen.- 8.Vektorrechnung und Lineare Algebra.- 9. Fortgeschrittene Methoden der Linearen Algebra.- 10. Mehrdimensionale Differentialrechnung.- 11. Kombinatorik und Wahrscheinlichkeitsrechnung.

Notă biografică

Andreas Knoblauch ist Professor für Informatik an der Hochschule Albstadt-Sigmaringen. Er unterrichtet dort in den Studiengängen Technische Informatik, IT-Security, Wirtschaftsinformatik, Systems Engineering und Data Science unter anderem Mathematik, Intelligente Systeme, Maschinelles Lernen und Mustererkennung. Daneben forscht er im Bereich Bildverarbeitung, Objekterkennung, Neuronale Netze, Neuromorphe Assoziativspeicher und Selbstreferentielles Autonomes Lernen.

Textul de pe ultima copertă

Dieses Buch liefert eine kompakte aber fundierte Darstellung der wichtigsten Gebiete der Mathematik für Informatik, die insbesondere für Data Science, Künstliche Intelligenz und Maschinelles Lernen notwendig sind. Inhaltlich gehören dazu Grundlagen zu Logik und Beweisen, ein- und mehrdimensionale Analysis mit Differential- und Integralrechnung, Lineare Algebra mit Vektor- und Matrixrechnung, linearen Gleichungssystemen, Koordinatentransformationen, Eigenvektoren sowie Wahrscheinlichkeitsrechnung mit Grundlagen der Kombinatorik, Statistik und Informationstheorie. Trotz der kompakten Darstellung werden alle Konzepte und Sätze sorgfältig eingeführt und bewiesen. Nichts soll vom Himmel fallen, sondern aus Axiomen und elementaren Prinzipien hergeleitet werden. Ziel ist es beim Studierenden das befriedigende Gefühl zu erzeugen, alles von Grund auf verstanden zu haben, und nichts nur „glauben“ zu müssen.
 
Der Inhalt
  • Mathematische und logische Grundlagen
  • Rechnen in Körpern
  • Grenzwerte von Folgen und Reihen
  • Rationale Funktionen und Stetigkeit
  • Differentialrechnung
  • Integration
  • Die komplexe Exponentialfunktion und die trigonometrischen Funktionen
  • Vektorrechnung und Lineare Algebra
  • Fortgeschrittene Methoden der Linearen Algebra
  • Mehrdimensionale Differentialrechnung
  • Kombinatorik und Wahrscheinlichkeitsrechnung
Der Autor
Andreas Knoblauch ist Professor für Informatik an der Hochschule Albstadt-Sigmaringen. Er unterrichtet dort in den Studiengängen Technische Informatik, IT-Security, Wirtschaftsinformatik, Systems Engineering und Data Science unter anderem Mathematik, Intelligente Systeme, Maschinelles Lernen und Mustererkennung. Daneben forscht er im Bereich Bildverarbeitung, Objekterkennung, Neuronale Netze, Neuromorphe Assoziativspeicher und Selbstreferentielles Autonomes Lernen.

Caracteristici

Beinhaltet die notwendige Mathematik für Informatik, insbesondere für Data Science und künstliche Intelligenz Begleitbuch für kompakte Grundlagen-Vorlesungen der Mathematik - Referenz für Kurse über Lernende Systeme Mit Aufgaben und Online-Musterlösungen