Mathematische Fingerübungen zum Weiterspielen: Ein Streifzug durch viele Gebiete der Mathematik mit Anregungen zum Nachdenken
Autor Dieter Riebesehlde Limba Germană Paperback – 9 feb 2023
Dieses Buch lädt alle an Mathematik Interessierten zu einer Reise durch eine Vielfalt an ungewöhnlichen Fragestellungen aus verschiedenen Gebieten ein, die spielerisch erforscht werden. Das Themenspektrum aus Analysis, Geometrie und Kombinatorik umfasst u. a. eine Reise Euklids in die nicht-euklidische Welt, Spiralen in Variationen, schöne Fahrradspuren, chaotische Abbildungen von Katzen, eine diophantische Gleichung, einen Besuch bei den Riesen unter den natürlichen Zahlen, etwas Physik und vieles mehr.
Sie werden zahlreiche Anregungen zur weitergehenden eigenen Beschäftigung finden. Unterstützt wird dies durch Literaturhinweise zu jedem Kapitel und den dokumentierten Einsatz des Computeralgebrasystems Mathematica. Der komplette Mathematica-Quellcode steht zum Download in CDF-Dateien bereit und bietet die Möglichkeit des interaktiven Experimentierens im frei zugänglichen Wolfram-Player.
Preț: 210.03 lei
Nou
Puncte Express: 315
Preț estimativ în valută:
40.20€ • 41.75$ • 33.39£
40.20€ • 41.75$ • 33.39£
Carte tipărită la comandă
Livrare economică 29 ianuarie-04 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662653890
ISBN-10: 3662653893
Ilustrații: XIII, 331 S. 148 Abb., 134 Abb. in Farbe. Mit Online-Extras.
Dimensiuni: 155 x 235 mm
Greutate: 0.65 kg
Ediția:1. Aufl. 2022
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3662653893
Ilustrații: XIII, 331 S. 148 Abb., 134 Abb. in Farbe. Mit Online-Extras.
Dimensiuni: 155 x 235 mm
Greutate: 0.65 kg
Ediția:1. Aufl. 2022
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany
Cuprins
Teil I Analysis und Physik.- Die Euler’sche Reihe und trigonometrische Summen.- Der Weg des Hinterrades.- Variationen mit Spiralfedern.- Origami auf krummen Wegen.- Das Zwillingsparadoxon mit beschleunigten Bewegungen.- Die aufgehängte Erde.- Der Sieg der Wurzel über den Logarithmus.- Teil II Geometrie.- Fast perfekte Spiralen aus Kreisbögen.- Euklid in der nicht-euklidischen Welt.- Die Hopf-Faserung in Formeln und Bildern.- Sehnen im Kreis mit ganzen Zahlen.- Teil III Algebra und Kombinatorik.- Die Irrfahrt des Betrunkenen von Laterne zu Laterne.- Arnolds Katze kehrt zurück.- Der Feynman-Punkt und was dahintersteckt.- Die Goodstein-Folge.- Überraschend reduzible Polynome.- Hamiltonpfade im Sudoku.- Futurama und das Theorem aus der Fernsehserie.- Ergänzungen zu ausgewählten Kapiteln.- Zur Syntax von Mathematica.- Lineare Rekursionen.- Sachverzeichnis.- Literaturverzeichnis.
Notă biografică
Prof. Dr. Dieter Riebesehl lehrte Mathematik, Informatik und Ingenieurmathematik an der Fakultät Wirtschaftswissenschaften der Leuphana Universität Lüneburg und ist passionierter Mathematiker.
Textul de pe ultima copertă
Dieses Buch lädt alle an Mathematik Interessierten zu einer Reise durch eine Vielfalt an ungewöhnlichen Fragestellungen aus verschiedenen Gebieten ein, die spielerisch erforscht werden. Das Themenspektrum aus Analysis, Geometrie und Kombinatorik umfasst u. a. eine Reise Euklids in die nicht-euklidische Welt, Spiralen in Variationen, schöne Fahrradspuren, chaotische Abbildungen von Katzen, eine diophantische Gleichung, einen Besuch bei den Riesen unter den natürlichen Zahlen, etwas Physik und vieles mehr.
Sie werden zahlreiche Anregungen zur weitergehenden eigenen Beschäftigung finden. Unterstützt wird dies durch Literaturhinweise zu jedem Kapitel und den dokumentierten Einsatz des Computeralgebrasystems Mathematica. Der komplette Mathematica-Quellcode steht zum Download in CDF-Dateien bereit und bietet die Möglichkeit des interaktiven Experimentierens im frei zugänglichen Wolfram-Player.
Der Autor
Prof. Dr. Dieter Riebesehl lehrte Mathematik, Informatik und Ingenieurmathematik an der Fakultät Wirtschaftswissenschaften der Leuphana Universität Lüneburg und ist passionierter Mathematiker.
Caracteristici
Bietet interessante und wenig bekannte mathematische Inhalte
Enthält Anregungen am Ende der Kapitel und interaktive Mathematica-Notebooks für den Player
Optimal als entspannende Mathematik für zwischendurch
Enthält Anregungen am Ende der Kapitel und interaktive Mathematica-Notebooks für den Player
Optimal als entspannende Mathematik für zwischendurch