Cantitate/Preț
Produs

Measure Theory Oberwolfach 1983: Proceedings of the Conference held at Oberwolfach, June 26-July 2, 1983: Lecture Notes in Mathematics, cartea 1089

Editat de D. Kölzow, D. Maharam-Stone
en Limba Engleză Paperback – noi 1984

Din seria Lecture Notes in Mathematics

Preț: 32467 lei

Nou

Puncte Express: 487

Preț estimativ în valută:
6213 6561$ 5170£

Carte tipărită la comandă

Livrare economică 11-25 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540138747
ISBN-10: 3540138749
Pagini: 348
Ilustrații: XIII, 330 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.49 kg
Ediția:1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Isolated and antiisolated measures.- Conditions that imply a space is Radon.- Random homeomorphisms.- On the planar representation of a measurable subfield.- Big sets are strongly Blackwell.- Some remarks on embeddings of Boolean algebras.- Remarks on some Borel structures.- Some combinatorial properties of measures.- On a lifting invariance problem.- A measurable selection and representation theorem in non-separable spaces.- Some remarks on invariant liftings.- Some remarks on measurable and semi-continuous multifunctions.- Measure and integral — A new gambit.- A tensor product vector integral.- Invariant Daniell integrals.- Boundedness for uniform semigroup-valued set functions.- Some measure theoretic implications for the Pettis integral.- Modular functions and their Frechet-Nikodym topologies.- Group- and vector-valued S-bounded contents.- Well-posedness of the Gardner-McMullen reconstruction problem.- Sub LP-spaces.- Sur un probleme de representation integrale les applications sommantes et la propriete de Radon-Nikodym.- Realcompactness and measure-compactness of the unit ball in a Banach space.- On ergodic theory and truncated limits in Banach lattices.- Ergodic cartesian products a la triangle sets.- For the historical record.- Measure theory and amarts.- Stochastic integration with respect to Gaussian processes.- Products of random measures, multilinear random forms, and multiple stochastic integrals.- Problem section.- Some combinatorial, geometric and set theoretic problems in measure theory.