Cantitate/Preț
Produs

Measuring Data Quality for Ongoing Improvement: A Data Quality Assessment Framework: The Morgan Kaufmann Series on Business Intelligence

Autor Laura Sebastian-Coleman
en Limba Engleză Paperback – 19 feb 2013
The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You’ll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You’ll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies.


  • Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges
  • Enables discussions between business and IT with a non-technical vocabulary for data quality measurement
  • Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation
Citește tot Restrânge

Din seria The Morgan Kaufmann Series on Business Intelligence

Preț: 24773 lei

Preț vechi: 29681 lei
-17% Nou

Puncte Express: 372

Preț estimativ în valută:
4741 4931$ 3968£

Carte tipărită la comandă

Livrare economică 08-22 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780123970336
ISBN-10: 0123970334
Pagini: 376
Dimensiuni: 191 x 235 x 23 mm
Greutate: 0.75 kg
Editura: ELSEVIER SCIENCE
Seria The Morgan Kaufmann Series on Business Intelligence


Public țintă

Data quality engineers, managers and analysts, application program managers and developers, data stewards, data managers and analysts, compliance analysts, Business intelligence professionals, Database designers and administrators, Business and IT managers

Cuprins

Section One: Concepts and Definitions
Chapter 1: Data
Chapter 2: Data, People, and Systems
Chapter 3: Data Management, Models, and Metadata
Chapter 4: Data Quality and Measurement
Section Two: DQAF Concepts and Measurement Types
Chapter 5: DQAF Concepts
Chapter 6: DQAF Measurement Types
Section Three: Data Assessment Scenarios
Chapter 7: Initial Data Assessment
Chapter 8 Assessment in Data Quality Improvement Projects
Chapter 9: Ongoing Measurement
Section Four: Applying the DQAF to Data Requirements
Chapter 10: Requirements, Risk, Criticality
Chapter 11: Asking Questions
Section Five: A Strategic Approach to Data Quality
Chapter 12: Data Quality Strategy
Chapter 13: Quality Improvement and Data Quality
Chapter 14: Directives for Data Quality Strategy
Section Six: The DQAF in Depth
Chapter 15: Functions of Measurement: Collection, Calculation, Comparison
Chapter 16: Features of the DQAF Measurement Logical
Chapter 17: Facets of the DQAF Measurement Types
Appendix A: Measuring the Value of Data
Appendix B: Data Quality Dimensions
Appendix C: Completeness, Consistency, and Integrity of the Data Model
Appendix D: Prediction, Error, and Shewhart’s lost disciple, Kristo Ivanov
Glossary
Bibliography

Recenzii

"This book provides a very well-structured introduction to the fundamental issue of data quality, making it a very useful tool for managers, practitioners, analysts, software developers, and systems engineers. It also helps explain what data quality management entails and provides practical approaches aimed at actual implementation. I positively recommend reading it…" --ComputingReviews.com, January 2014
"The framework she describes is a set of 48 generic measurement types based on five dimensions of data quality: completeness, timeliness, validity, consistency, and integrity. The material is for people who are charged with improving, monitoring, or ensuring data quality." --Reference and Research Book News, August 2013
"If you are intent on improving the quality of the data at your organization you would do well to read Measuring Data Quality for Ongoing Improvement and adopt the DQAF offered up in this fine book." --Data and Technology Today blog, July 2013