Meromorphic Dynamics 2 Volume Hardback Set: New Mathematical Monographs
Autor Janina Kotus, Mariusz Urbańskien Limba Engleză Quantity pack – 3 mai 2023
Din seria New Mathematical Monographs
- 14% Preț: 904.11 lei
- 14% Preț: 825.13 lei
- 14% Preț: 1359.41 lei
- 9% Preț: 1174.66 lei
- 14% Preț: 948.93 lei
- 9% Preț: 1011.28 lei
- 8% Preț: 532.52 lei
- 14% Preț: 952.70 lei
- 11% Preț: 526.33 lei
- 14% Preț: 951.59 lei
- 14% Preț: 1082.92 lei
- 14% Preț: 847.75 lei
- 14% Preț: 844.42 lei
- 11% Preț: 488.01 lei
- 11% Preț: 616.50 lei
- 11% Preț: 602.22 lei
- 11% Preț: 457.86 lei
- 14% Preț: 1143.81 lei
- 14% Preț: 1089.60 lei
- 14% Preț: 686.45 lei
- 14% Preț: 747.80 lei
- 11% Preț: 598.21 lei
- 14% Preț: 764.73 lei
- 14% Preț: 850.23 lei
- 14% Preț: 848.81 lei
- 14% Preț: 953.45 lei
- 14% Preț: 1084.44 lei
- 14% Preț: 950.48 lei
- 14% Preț: 964.50 lei
- 14% Preț: 953.77 lei
- 14% Preț: 975.56 lei
- 14% Preț: 1183.02 lei
- 14% Preț: 1087.24 lei
- 14% Preț: 1146.88 lei
- 14% Preț: 1088.99 lei
- 11% Preț: 491.91 lei
- 14% Preț: 953.16 lei
- 14% Preț: 848.05 lei
- 14% Preț: 956.76 lei
- 14% Preț: 828.10 lei
- 14% Preț: 957.54 lei
- 14% Preț: 845.05 lei
- 14% Preț: 749.66 lei
- 14% Preț: 744.48 lei
- 27% Preț: 1020.54 lei
- 20% Preț: 573.90 lei
Preț: 1391.03 lei
Preț vechi: 1617.47 lei
-14% Nou
Puncte Express: 2087
Preț estimativ în valută:
266.29€ • 290.09$ • 223.39£
266.29€ • 290.09$ • 223.39£
Carte disponibilă
Livrare economică 28 noiembrie-12 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781009216050
ISBN-10: 1009216058
Pagini: 400
Dimensiuni: 157 x 235 x 60 mm
Greutate: 1.72 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria New Mathematical Monographs
Locul publicării:Cambridge, United Kingdom
ISBN-10: 1009216058
Pagini: 400
Dimensiuni: 157 x 235 x 60 mm
Greutate: 1.72 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria New Mathematical Monographs
Locul publicării:Cambridge, United Kingdom
Cuprins
Volume I. Preface; Acknowledgments; Introduction; Part I. Ergodic Theory and Geometric Measures: 1. Geometric measure theory; 2. Invariant measures: finite and infinite; 3. Probability (finite) invariant measures: basic properties and existence; 4. Probability (finite) invariant measures: finer properties; 5. Infinite invariant measures: finer properties; 6. measure- theoretic entropy; 7. Thermodynamic formalism; Part II. Complex Analysis, Conformal Measures, and Graph Directed Markov Systems: 8. Selected topics from complex analysis; 9. Invariant measures for holomorphic maps f in A(X) or in Aw(X); 10. Sullivan conformal measures for holomorphic maps f in A(X) and in Aw(X); 11. Graph directed Markov systems; 12. Nice sets for analytic maps; References; Index of symbols; Subject index; Volume II. Preface; Acknowledgments; Introduction; Part III. Topological Dynamics of Meromorphic Functions: 13. Fundamental properties of meromorphic dynamical systems; 14. Finer properties of fatou components; 15. Rationally indifferent periodic points; Part IV. Elliptic Functions: Classics, Geometry, and Dynamics: 16. Classics of elliptic functions: selected properties; 17. Geometry and dynamics of (all) elliptic functions; Part V. Compactly Nonrecurrent Elliptic Functions: First Outlook: 18. Dynamics of compactly norecurrent elliptic functions; 19. Various examples of compactly nonrecurrent elliptic functions; Part VI. Compactly Nonrecurrent Elliptic Functions: Fractal Geometry, Stochastic Properties, and Rigidity: 20. Sullivan h-conformal measures for compactly nonrecurrent elliptic functions; 21. Hausdorff and packing measures of compactly nonrecurrent regular elliptic functions; 22. Conformal invariant measures for compactly nonrecurrent regular elliptic functions; 23. Dynamical rigidity of compactly nonrecurrent regular elliptic functions; Appendix A. A quick review of some selected facts from complex analysis of a one-complex variable; Appendix B. Proof of the Sullivan nonwandering theorem for speiser class S; References; Index of symbols; Subject index.
Descriere
Details key results from ergodic theory and geometric measure theory, then applies those techniques to the dynamics of elliptic functions.