Meromorphic Dynamics 2 Volume Hardback Set: New Mathematical Monographs
Autor Janina Kotus, Mariusz Urbańskien Limba Engleză Quantity pack – 3 mai 2023
Din seria New Mathematical Monographs
- 14% Preț: 938.47 lei
- 14% Preț: 856.51 lei
- 14% Preț: 1411.17 lei
- 9% Preț: 1174.66 lei
- 14% Preț: 985.01 lei
- 9% Preț: 1011.28 lei
- 14% Preț: 988.91 lei
- 11% Preț: 546.26 lei
- 14% Preț: 987.76 lei
- 14% Preț: 1124.90 lei
- 14% Preț: 880.57 lei
- 14% Preț: 876.52 lei
- 11% Preț: 506.47 lei
- 11% Preț: 639.88 lei
- 11% Preț: 625.05 lei
- 11% Preț: 475.19 lei
- 14% Preț: 1187.34 lei
- 14% Preț: 1131.06 lei
- 14% Preț: 712.50 lei
- 14% Preț: 776.19 lei
- 11% Preț: 620.89 lei
- 14% Preț: 794.31 lei
- 14% Preț: 882.54 lei
- 14% Preț: 881.07 lei
- 14% Preț: 989.71 lei
- 14% Preț: 1125.72 lei
- 14% Preț: 986.62 lei
- 14% Preț: 1001.89 lei
- 14% Preț: 990.02 lei
- 14% Preț: 1012.66 lei
- 14% Preț: 1228.05 lei
- 14% Preț: 1128.62 lei
- 14% Preț: 1190.54 lei
- 14% Preț: 1130.41 lei
- 11% Preț: 510.54 lei
- 14% Preț: 989.42 lei
- 14% Preț: 880.89 lei
- 14% Preț: 993.14 lei
- 14% Preț: 859.58 lei
- 8% Preț: 532.52 lei
- 14% Preț: 993.92 lei
- 14% Preț: 877.16 lei
- 14% Preț: 778.12 lei
- 14% Preț: 772.75 lei
- 27% Preț: 1030.23 lei
- 19% Preț: 579.34 lei
Preț: 1445.01 lei
Preț vechi: 1680.24 lei
-14% Nou
Puncte Express: 2168
Preț estimativ în valută:
276.63€ • 287.55$ • 229.36£
276.63€ • 287.55$ • 229.36£
Carte disponibilă
Livrare economică 17-31 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781009216050
ISBN-10: 1009216058
Pagini: 400
Dimensiuni: 157 x 235 x 60 mm
Greutate: 1.72 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria New Mathematical Monographs
Locul publicării:Cambridge, United Kingdom
ISBN-10: 1009216058
Pagini: 400
Dimensiuni: 157 x 235 x 60 mm
Greutate: 1.72 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria New Mathematical Monographs
Locul publicării:Cambridge, United Kingdom
Cuprins
Volume I. Preface; Acknowledgments; Introduction; Part I. Ergodic Theory and Geometric Measures: 1. Geometric measure theory; 2. Invariant measures: finite and infinite; 3. Probability (finite) invariant measures: basic properties and existence; 4. Probability (finite) invariant measures: finer properties; 5. Infinite invariant measures: finer properties; 6. measure- theoretic entropy; 7. Thermodynamic formalism; Part II. Complex Analysis, Conformal Measures, and Graph Directed Markov Systems: 8. Selected topics from complex analysis; 9. Invariant measures for holomorphic maps f in A(X) or in Aw(X); 10. Sullivan conformal measures for holomorphic maps f in A(X) and in Aw(X); 11. Graph directed Markov systems; 12. Nice sets for analytic maps; References; Index of symbols; Subject index; Volume II. Preface; Acknowledgments; Introduction; Part III. Topological Dynamics of Meromorphic Functions: 13. Fundamental properties of meromorphic dynamical systems; 14. Finer properties of fatou components; 15. Rationally indifferent periodic points; Part IV. Elliptic Functions: Classics, Geometry, and Dynamics: 16. Classics of elliptic functions: selected properties; 17. Geometry and dynamics of (all) elliptic functions; Part V. Compactly Nonrecurrent Elliptic Functions: First Outlook: 18. Dynamics of compactly norecurrent elliptic functions; 19. Various examples of compactly nonrecurrent elliptic functions; Part VI. Compactly Nonrecurrent Elliptic Functions: Fractal Geometry, Stochastic Properties, and Rigidity: 20. Sullivan h-conformal measures for compactly nonrecurrent elliptic functions; 21. Hausdorff and packing measures of compactly nonrecurrent regular elliptic functions; 22. Conformal invariant measures for compactly nonrecurrent regular elliptic functions; 23. Dynamical rigidity of compactly nonrecurrent regular elliptic functions; Appendix A. A quick review of some selected facts from complex analysis of a one-complex variable; Appendix B. Proof of the Sullivan nonwandering theorem for speiser class S; References; Index of symbols; Subject index.
Descriere
Details key results from ergodic theory and geometric measure theory, then applies those techniques to the dynamics of elliptic functions.