Meromorphic Dynamics 2 Volume Hardback Set: New Mathematical Monographs
Autor Janina Kotus, Mariusz Urbańskien Limba Engleză Quantity pack – 3 mai 2023
Din seria New Mathematical Monographs
- 14% Preț: 954.57 lei
- 14% Preț: 871.20 lei
- 14% Preț: 1435.42 lei
- 9% Preț: 1174.66 lei
- 14% Preț: 1001.91 lei
- 9% Preț: 1011.28 lei
- 14% Preț: 1005.89 lei
- 11% Preț: 555.59 lei
- 14% Preț: 1004.72 lei
- 14% Preț: 1144.20 lei
- 14% Preț: 895.68 lei
- 14% Preț: 891.56 lei
- 11% Preț: 515.12 lei
- 11% Preț: 650.83 lei
- 11% Preț: 635.75 lei
- 11% Preț: 483.30 lei
- 14% Preț: 1207.73 lei
- 14% Preț: 1150.49 lei
- 14% Preț: 724.71 lei
- 14% Preț: 789.51 lei
- 11% Preț: 631.51 lei
- 14% Preț: 807.92 lei
- 14% Preț: 897.68 lei
- 14% Preț: 896.20 lei
- 14% Preț: 1006.70 lei
- 14% Preț: 1145.05 lei
- 14% Preț: 1003.55 lei
- 14% Preț: 1019.07 lei
- 14% Preț: 1007.02 lei
- 14% Preț: 1030.04 lei
- 14% Preț: 1249.14 lei
- 14% Preț: 1148.00 lei
- 14% Preț: 1210.98 lei
- 14% Preț: 1149.82 lei
- 11% Preț: 519.28 lei
- 14% Preț: 1006.38 lei
- 14% Preț: 896.01 lei
- 14% Preț: 1010.19 lei
- 14% Preț: 874.34 lei
- 8% Preț: 532.52 lei
- 14% Preț: 1011.00 lei
- 14% Preț: 892.21 lei
- 14% Preț: 791.46 lei
- 14% Preț: 786.00 lei
- 27% Preț: 1030.23 lei
- 19% Preț: 579.34 lei
Preț: 1469.84 lei
Preț vechi: 1709.12 lei
-14% Nou
Puncte Express: 2205
Preț estimativ în valută:
281.39€ • 293.60$ • 235.88£
281.39€ • 293.60$ • 235.88£
Carte disponibilă
Livrare economică 20 februarie-06 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781009216050
ISBN-10: 1009216058
Pagini: 400
Dimensiuni: 157 x 235 x 60 mm
Greutate: 1.72 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria New Mathematical Monographs
Locul publicării:Cambridge, United Kingdom
ISBN-10: 1009216058
Pagini: 400
Dimensiuni: 157 x 235 x 60 mm
Greutate: 1.72 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria New Mathematical Monographs
Locul publicării:Cambridge, United Kingdom
Cuprins
Volume I. Preface; Acknowledgments; Introduction; Part I. Ergodic Theory and Geometric Measures: 1. Geometric measure theory; 2. Invariant measures: finite and infinite; 3. Probability (finite) invariant measures: basic properties and existence; 4. Probability (finite) invariant measures: finer properties; 5. Infinite invariant measures: finer properties; 6. measure- theoretic entropy; 7. Thermodynamic formalism; Part II. Complex Analysis, Conformal Measures, and Graph Directed Markov Systems: 8. Selected topics from complex analysis; 9. Invariant measures for holomorphic maps f in A(X) or in Aw(X); 10. Sullivan conformal measures for holomorphic maps f in A(X) and in Aw(X); 11. Graph directed Markov systems; 12. Nice sets for analytic maps; References; Index of symbols; Subject index; Volume II. Preface; Acknowledgments; Introduction; Part III. Topological Dynamics of Meromorphic Functions: 13. Fundamental properties of meromorphic dynamical systems; 14. Finer properties of fatou components; 15. Rationally indifferent periodic points; Part IV. Elliptic Functions: Classics, Geometry, and Dynamics: 16. Classics of elliptic functions: selected properties; 17. Geometry and dynamics of (all) elliptic functions; Part V. Compactly Nonrecurrent Elliptic Functions: First Outlook: 18. Dynamics of compactly norecurrent elliptic functions; 19. Various examples of compactly nonrecurrent elliptic functions; Part VI. Compactly Nonrecurrent Elliptic Functions: Fractal Geometry, Stochastic Properties, and Rigidity: 20. Sullivan h-conformal measures for compactly nonrecurrent elliptic functions; 21. Hausdorff and packing measures of compactly nonrecurrent regular elliptic functions; 22. Conformal invariant measures for compactly nonrecurrent regular elliptic functions; 23. Dynamical rigidity of compactly nonrecurrent regular elliptic functions; Appendix A. A quick review of some selected facts from complex analysis of a one-complex variable; Appendix B. Proof of the Sullivan nonwandering theorem for speiser class S; References; Index of symbols; Subject index.
Descriere
Details key results from ergodic theory and geometric measure theory, then applies those techniques to the dynamics of elliptic functions.