Methods of Bosonic and Fermionic Path Integrals Representations
Autor Luiz C. L. Botelhoen Limba Engleză Hardback – 23 mar 2009
Preț: 968.03 lei
Preț vechi: 1319.80 lei
-27% Nou
Puncte Express: 1452
Preț estimativ în valută:
185.37€ • 190.100$ • 155.55£
185.37€ • 190.100$ • 155.55£
Carte disponibilă
Livrare economică 01-15 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781604560688
ISBN-10: 1604560681
Pagini: 336
Ilustrații: illustrations
Dimensiuni: 187 x 263 x 26 mm
Greutate: 0.9 kg
Editura: Nova Science Publishers Inc
ISBN-10: 1604560681
Pagini: 336
Ilustrații: illustrations
Dimensiuni: 187 x 263 x 26 mm
Greutate: 0.9 kg
Editura: Nova Science Publishers Inc
Cuprins
Preface; Loop Space Path Integrals Representations for Euclidean Quantum Fields Path Integrals and the Covariant Path Integral; Path Integrals Evaluations in Bosonic Random Loop Geometry - Abelian Wilson Loops; The Triviality - Quantum Decoherence of Quantum Chromodynamics in the Presence of An External Strong White-Noise Eletromagnetic Field; The Confining Behaviour and Asymptotic Freedom for QCD(SU)- A Constant Gauge Field Path Integral Analysis; Triviality - Quantum Decoherence of Fermionic Quantum Chromodynamics SU (N_c) in the Presence of an External Strong U Flavored Constant Noise Field; Fermions on the Lattice by Means of Mandelstam-Wilson Phase Factors A Bosonic Lattice Path-Integral Framework; A Connection between Fermionic Strings and Quantum - Gravity States - A Loop Space Approach; A Fermionic Loop Wave Equation for Quantum Chromodynamics at N_c = +; String Wave Equations in Polyakov's Path Integral Framework; A Random Surface Menbrane Wave Equation for Bosonic Q.C.D. (SU); Covariant Functional Diffusion Equation for Polyakov's Bosonic String; Covariant Path Integral for Nambu-Goto String Theory; Topological fermionic string representation for Chern-Simons non-Abelian gauge theories; Fermionic String Representation for the Three-Dimensional Ising Model; A Polyakov Fermionic String as a Quantum State of Einstein theory of Gravitation; A Scattering Amplitude in the Quantum Geometry of Fermionic Strings; Path-Integral Bosonization for the Thirring Model on a Riemann Surface; A Path-Integral Approach for Bosonic effective theories for Fermion Fields in Four and Three Dimensions; Domains of Bosonic Functional Integrals and Some Applications to the Mathematical Physics of Path Integrals and String Theory; Non-linear diffusion in R D and in Hilbert Spaces, A Path Integral Study; Basics Integrals Representations in Mathematical Analysis of Euclidean Functional Integrals; Supplementary Appendixes; Index.