Cantitate/Preț
Produs

Model Theory and Arithmetic: Comptes rendus d'une action thematique programmee du C.N.R.S. sur la theorie des modeles et l'Arithmetique, Paris, France, 1979/80: Lecture Notes in Mathematics, cartea 890

Editat de C. Berline, K. McAloon, J.-P. Ressayre
en Limba Engleză Paperback – noi 1981

Din seria Lecture Notes in Mathematics

Preț: 41022 lei

Nou

Puncte Express: 615

Preț estimativ în valută:
7852 8183$ 6536£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540111597
ISBN-10: 354011159X
Pagini: 316
Ilustrații: VI, 306 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.45 kg
Ediția:1981
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Models of Peano Arithmetic.- Cuts in Models of Arithmetic.- Two notes on the Paris independence result.- The ordinal height of a density.- Ideaux des anneaux de Peano (d'apres Cherlin).- Theorie elementaire de la multiplication des entiers naturels.- La representation en termes de faisceaux des modeles de la theorie elementaire de la multiplication des entiers naturels.- Note on a nullstellensatz.- Anti-Basis theorems and their relation to independence results in Peano arithmetic.- A note on Decidable Model theory.- Interprétations d'Arithmétiques dans des groupes et des treillis.- Les methodes de Kieby-Paris et la théorie des ensembles.- The laws of exponentiation.- Le théorème de MATIYASSÉVITCH et résultats connexes.- Borne superieure de la complexite de la theorie de ? muni de la relation de divisibilite.- Some conservation results for fragments of arithmetic.- Partition properties and definable types in Peano Arithmetic.- De la structure additive a la saturation des modeles de Peano et a une classification des sous-langages de l'Arithmetique.- On discretely ordered rings in which every definable ideal is principal.- An observation concerning the relationship between finite and infinitary ? 1 1 .