Cantitate/Preț
Produs

Modeling Evolution of Heterogeneous Populations: Theory and Applications

Autor Irina Kareva, Georgy Karev
en Limba Engleză Paperback – 17 oct 2019
Modeling Evolution of Heterogeneous Populations: Theory and Applications describes, develops and provides applications of a method that allows incorporating population heterogeneity into systems of ordinary and discrete differential equations without significantly increasing system dimensionality. The method additionally allows making use of results of bifurcation analysis performed on simplified homogeneous systems, thereby building on the existing body of tools and knowledge and expanding applicability and predictive power of many mathematical models.


  • Introduces Hidden Keystone Variable (HKV) method, which allows modeling evolution of heterogenous populations, while reducing multi-dimensional selection systems to low-dimensional systems of differential equations
  • Demonstrates that replicator dynamics is governed by the principle of maximal relative entropy that can be derived from the dynamics of selection systems instead of being postulated
  • Discusses mechanisms behind models of both Darwinian and non-Darwinian selection
  • Provides examples of applications to various fields, including cancer growth, global demography, population extinction, tragedy of the commons and resource sustainability, among others
  • Helps inform differences in underlying mechanisms of population growth from experimental observations, taking one from experiment to theory and back
Citește tot Restrânge

Preț: 68998 lei

Preț vechi: 94108 lei
-27% Nou

Puncte Express: 1035

Preț estimativ în valută:
13209 13585$ 10958£

Carte tipărită la comandă

Livrare economică 10-24 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780128143681
ISBN-10: 0128143681
Pagini: 354
Dimensiuni: 191 x 235 mm
Greutate: 0.6 kg
Editura: ELSEVIER SCIENCE

Public țintă

Biological scientists looking to expand their mathematical modelling toolbox. Advanced graduate and 1st year PhD students. The areas of applicability of the method involve microbiology, ecology, population biology, cancer, social sciences, and infectious diseases, among others

Cuprins

1. Using mathematical modeling to ask meaningful biological questions through combination of bifurcation analysis and population heterogeneity2. Inhomogeneous models of Malthusian type and the HKV method3. Some applications of inhomogeneous population models of Malthusian type4. Selection systems and the reduction theorem5. Some applications of the reduction theorem and the HKV methods6. Nonlinear replicator dynamics7. Inhomogeneous logistic equations and models for Darwinian and non-Darwinian evolution8. Replicator dynamics and the principle of minimal information gain9. Subexponential replicator dynamics and the principle of minimal Tsallis information gain10. Modeling extinction of inhomogeneous populations11. From experiment to theory: What can we learn from growth curves? 12. Traveling through phase-parameter portrait13. Evolutionary games: Natural selection of strategies14. Natural selection between two games with applications to game theoretical models of cancer15. Discrete-time selection systems16. Conclusions17. Moment-generating functions for various initial distributions