Cantitate/Preț
Produs

Modern Deep Learning Design and Application Development: Versatile Tools to Solve Deep Learning Problems

Autor Andre Ye
en Limba Engleză Paperback – 19 noi 2021
Learn how to harness modern deep-learning methods in many contexts. Packed with intuitive theory, practical implementation methods, and deep-learning case studies, this book reveals how to acquire the tools you need to design and implement like a deep-learning architect. It covers tools deep learning engineers can use in a wide range of fields, from biology to computer vision to business. With nine in-depth case studies, this book will ground you in creative, real-world deep learning thinking.  
You’ll begin with a structured guide to using Keras, with helpful tips and best practices for making the most of the framework. Next, you’ll learn how to train models effectively with transfer learning and self-supervised pre-training. You will then learn how to use a variety of model compressions for practical usage. Lastly, you will learn how to design successful neural network architectures and creatively reframe difficult problems into solvable ones. You’ll learn notonly to understand and apply methods successfully but to think critically about it. Modern Deep Learning Design and Methods is ideal for readers looking to utilize modern, flexible, and creative deep-learning design and methods. Get ready to design and implement innovative deep-learning solutions to today’s difficult problems. 
What You’ll Learn
  • Improve the performance of deep learning models by using pre-trained models, extracting rich features, and automating optimization.
  • Compress deep learning models while maintaining performance.
  • Reframe a wide variety of difficult problems and design effective deep learning solutions to solve them.
  • Use the Keras framework, with some help from libraries like HyperOpt, TensorFlow, and PyTorch, to implement a wide variety of deep learning approaches.
Who This Book Is For
Data scientists with some familiarity with deep learning to deep learning engineers seeking structured inspiration and direction on their next project. Developers interested in harnessing modern deep learning methods to solve a variety of difficult problems.


Citește tot Restrânge

Preț: 30526 lei

Preț vechi: 38157 lei
-20% Nou

Puncte Express: 458

Preț estimativ în valută:
5842 6163$ 4869£

Carte disponibilă

Livrare economică 12-26 decembrie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781484274125
ISBN-10: 1484274121
Pagini: 190
Ilustrații: XIX, 451 p. 204 illus.
Dimensiuni: 178 x 254 x 28 mm
Greutate: 0.81 kg
Ediția:1st ed.
Editura: Apress
Colecția Apress
Locul publicării:Berkeley, CA, United States

Cuprins

Chapter 1: A Deep Dive Into Keras.- Chapter 2: Pre-training Strategies and Transfer Learning.- Chapter 3: The Versatility of Autoencoders.- Chapter 4: Model Compression for Practical Deployment.- Chapter 5: Automating Model Design with Meta-Optimization.- Chapter 6:Successful Neural Network Architecture Design.- Chapter 7:Reframing Difficult Deep Learning Problems.


Notă biografică

Andre Ye is a data science writer and editor; he has written over 300 data science articles for various top data science publications with over ten million views. He is also a cofounder at Critiq, a peer revision platform that uses machine learning to match users’ essays. In his spare time, Andre enjoys keeping up with current deep learning research, playing the piano, and swimming.


Textul de pe ultima copertă

Learn how to harness modern deep-learning methods in many contexts. Packed with intuitive theory, practical implementation methods, and deep-learning case studies, this book reveals how to acquire the tools you need to design and implement like a deep-learning architect. It covers tools deep learning engineers can use in a wide range of fields, from biology to computer vision to business. With nine in-depth case studies, this book will ground you in creative, real-world deep learning thinking.  
You’ll begin with a structured guide to using Keras, with helpful tips and best practices for making the most of the framework. Next, you’ll learn how to train models effectively with transfer learning and self-supervised pre-training. You will then learn how to use a variety of model compressions for practical usage. Lastly, you will learn how to design successful neural network architectures and creatively reframe difficult problems into solvable ones. You’ll learn not only tounderstand and apply methods successfully but to think critically about it. Modern Deep Learning Design and Methods is ideal for readers looking to utilize modern, flexible, and creative deep-learning design and methods. Get ready to design and implement innovative deep-learning solutions to today’s difficult problems. 
You will:
  • Improve the performance of deep learning models by using pre-trained models, extracting rich features, and automating optimization.
  • Compress deep learning models while maintaining performance.
  • Reframe a wide variety of difficult problems and design effective deep learning solutions to solve them.
  • Use the Keras framework, with some help from libraries like HyperOpt, TensorFlow, and PyTorch, to implement a wide variety of deep learning approaches.


Caracteristici

Explains how to think about deep learning from an analytical and creative problem-solving perspective Covers multiple case studies of deep learning architectures Prepares the readers to think critically about the continuously evolving nature of deep learning development