Modern Methods for Robust Regression: Quantitative Applications in the Social Sciences, cartea 152
Autor Robert Andersenen Limba Engleză Paperback – 11 noi 2007
Din seria Quantitative Applications in the Social Sciences
- Preț: 306.05 lei
- Preț: 265.20 lei
- Preț: 270.24 lei
- Preț: 266.32 lei
- Preț: 270.28 lei
- Preț: 287.54 lei
- Preț: 296.84 lei
- Preț: 288.63 lei
- Preț: 289.17 lei
- Preț: 265.74 lei
- Preț: 267.65 lei
- Preț: 269.49 lei
- Preț: 288.08 lei
- Preț: 288.35 lei
- Preț: 287.82 lei
- Preț: 288.08 lei
- Preț: 287.54 lei
- Preț: 288.32 lei
- Preț: 287.54 lei
- Preț: 288.08 lei
- Preț: 288.63 lei
- Preț: 287.82 lei
- Preț: 289.17 lei
- Preț: 289.37 lei
- Preț: 288.44 lei
- Preț: 289.44 lei
- Preț: 288.63 lei
- Preț: 269.90 lei
- Preț: 281.00 lei
- Preț: 279.68 lei
- Preț: 281.37 lei
- Preț: 280.79 lei
- Preț: 281.94 lei
- Preț: 280.25 lei
- Preț: 282.48 lei
- Preț: 279.88 lei
- Preț: 279.88 lei
- Preț: 281.00 lei
- Preț: 280.63 lei
- Preț: 280.25 lei
- Preț: 279.68 lei
- Preț: 281.57 lei
- Preț: 281.74 lei
- Preț: 280.05 lei
- Preț: 280.25 lei
- Preț: 281.74 lei
- Preț: 281.74 lei
- Preț: 280.42 lei
Preț: 282.48 lei
Nou
Puncte Express: 424
Preț estimativ în valută:
54.07€ • 56.35$ • 45.01£
54.07€ • 56.35$ • 45.01£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781412940726
ISBN-10: 1412940729
Pagini: 128
Dimensiuni: 140 x 216 x 7 mm
Greutate: 0.15 kg
Ediția:1
Editura: SAGE Publications
Colecția Sage Publications, Inc
Seria Quantitative Applications in the Social Sciences
Locul publicării:Thousand Oaks, United States
ISBN-10: 1412940729
Pagini: 128
Dimensiuni: 140 x 216 x 7 mm
Greutate: 0.15 kg
Ediția:1
Editura: SAGE Publications
Colecția Sage Publications, Inc
Seria Quantitative Applications in the Social Sciences
Locul publicării:Thousand Oaks, United States
Cuprins
List of Figures
List of Tables
Series Editor's Introduction
Acknowledgments
1. Introduction
Defining Robustness
Defining Robust Regression
A Real-World Example: Coital Frequency of Married Couples in the 1970s
2. Important Background
Bias and Consistency
Breakdown Point
Influence Function
Relative Efficiency
Measures of Location
Measures of Scale
M-Estimation
Comparing Various Estimates
Notes
3. Robustness, Resistance, and Ordinary Least Squares Regression
Ordinary Least Squares Regression
Implications of Unusual Cases for OLS Estimates and Standard Errors
Detecting Problematic Observations in OLS Regression
Notes
4. Robust Regression for the Linear Model
L-Estimators
R-Estimators
M-Estimators
GM-Estimators
S-Estimators
Generalized S-Estimators
MM-Estimators
Comparing the Various Estimators
Diagnostics Revisited: Robust Regression-Related Methods for Detecting Outliers
Notes
5. Standard Errors for Robust Regression
Asymptotic Standard Errors for Robust Regression Estimators
Bootstrapped Standard Errors
Notes
6. Influential Cases in Generalized Linear Models
The Generalized Linear Model
Detecting Unusual Cases in Generalized Linear Models
Robust Generalized Linear Models
Notes
7. Conclusions
Appendix: Software Considerations for Robust Regression
References
Index
About the Author
List of Tables
Series Editor's Introduction
Acknowledgments
1. Introduction
Defining Robustness
Defining Robust Regression
A Real-World Example: Coital Frequency of Married Couples in the 1970s
2. Important Background
Bias and Consistency
Breakdown Point
Influence Function
Relative Efficiency
Measures of Location
Measures of Scale
M-Estimation
Comparing Various Estimates
Notes
3. Robustness, Resistance, and Ordinary Least Squares Regression
Ordinary Least Squares Regression
Implications of Unusual Cases for OLS Estimates and Standard Errors
Detecting Problematic Observations in OLS Regression
Notes
4. Robust Regression for the Linear Model
L-Estimators
R-Estimators
M-Estimators
GM-Estimators
S-Estimators
Generalized S-Estimators
MM-Estimators
Comparing the Various Estimators
Diagnostics Revisited: Robust Regression-Related Methods for Detecting Outliers
Notes
5. Standard Errors for Robust Regression
Asymptotic Standard Errors for Robust Regression Estimators
Bootstrapped Standard Errors
Notes
6. Influential Cases in Generalized Linear Models
The Generalized Linear Model
Detecting Unusual Cases in Generalized Linear Models
Robust Generalized Linear Models
Notes
7. Conclusions
Appendix: Software Considerations for Robust Regression
References
Index
About the Author