Cantitate/Preț
Produs

Multi-Armed Bandits: Theory and Applications to Online Learning in Networks: Synthesis Lectures on Learning, Networks, and Algorithms

Autor Qing Zhao
en Limba Engleză Paperback – 21 noi 2019
Multi-armed bandit problems pertain to optimal sequential decision making and learning in unknown environments. Since the first bandit problem posed by Thompson in 1933 for the application of clinical trials, bandit problems have enjoyed lasting attention from multiple research communities and have found a wide range of applications across diverse domains. This book covers classic results and recent development on both Bayesian and frequentist bandit problems. We start in Chapter 1 with a brief overview on the history of bandit problems, contrasting the two schools—Bayesian and frequentist—of approaches and highlighting foundational results and key applications. Chapters 2 and 4 cover, respectively, the canonical Bayesian and frequentist bandit models. In Chapters 3 and 5, we discuss major variants of the canonical bandit models that lead to new directions, bring in new techniques, and broaden the applications of this classical problem. In Chapter 6, we present several representative application examples in communication networks and social-economic systems, aiming to illuminate the connections between the Bayesian and the frequentist formulations of bandit problems and how structural results pertaining to one may be leveraged to obtain solutions under the other.
Citește tot Restrânge

Din seria Synthesis Lectures on Learning, Networks, and Algorithms

Preț: 29647 lei

Preț vechi: 37059 lei
-20% Nou

Puncte Express: 445

Preț estimativ în valută:
5676 58100$ 4706£

Carte tipărită la comandă

Livrare economică 01-07 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031792885
ISBN-10: 3031792882
Pagini: 147
Ilustrații: XVIII, 147 p.
Dimensiuni: 191 x 235 mm
Editura: Springer International Publishing
Colecția Springer
Seria Synthesis Lectures on Learning, Networks, and Algorithms

Locul publicării:Cham, Switzerland

Cuprins

Preface.- Acknowledgments.- Introduction.- Bayesian Bandit Model and Gittins Index.- Variants of the Bayesian Bandit Model.- Frequentist Bandit Model.- Variants of the Frequentist Bandit Model.- Application Examples.- Bibliography.- Author's Biography.

Notă biografică

Qing Zhao is a Joseph C. Ford Professor of Engineering at Cornell University. Prior to that, she was a Professor in the ECE Department at University of California, Davis. She received a Ph.D. in Electrical Engineering from Cornell in 2001. Her research interests include sequential decision theory, stochastic optimization, machine learning, and algorithmic theory with applications in infrastructure, communications, and social-economic networks. She is a Fellow of IEEE, a Distinguished Lecturer of the IEEE Signal Processing Society, a Marie Skłodowska-Curie Fellow of the European Union Research and Innovation program, and a Jubilee Chair Professor of Chalmers University during her 2018-2019 sabbatical leave. She received the 2010 IEEE Signal Processing Magazine Best Paper Award and the 2000 Young Author Best Paper Award from IEEE Signal Processing Society.