Multiple-Base Number System: Theory and Applications: Circuits and Electrical Engineering
Autor Vassil Dimitrov, Graham Jullien, Roberto Muscedereen Limba Engleză Paperback – 6 apr 2017
Multiple-Base Number System: Theory and Applications stands apart from the usual books on computer arithmetic with its concentration on the uses and the mathematical operations associated with the recently introduced multiple-base number system (MBNS). The book identifies and explores several diverse and never-before-considered MBNS applications (and their implementation issues) to enhance computation efficiency, specifically in digital signal processing (DSP) and public key cryptography.
Despite the recent development and increasing popularity of MBNS as a specialized tool for high-performance calculations in electronic hardware and other fields, no single text has compiled all the crucial, cutting-edge information engineers need to optimize its use. The authors’ main goal was to disseminate the results of extensive design research—including much of their own—to help the widest possible audience of engineers, computer scientists, and mathematicians.
Dedicated to helping readers apply discoveries in advanced integrated circuit technologies, this single reference is packed with a wealth of vital content previously scattered throughout limited-circulation technical and mathematical journals and papers—resources generally accessible only to researchers and designers working in highly specialized fields. Leveling the informational playing field, this resource guides readers through an in-depth analysis of theory, architectural techniques, and the latest research on the subject, subsequently laying the groundwork users require to begin applying MBNS.
Preț: 410.36 lei
Preț vechi: 592.94 lei
-31% Nou
Puncte Express: 616
Preț estimativ în valută:
78.54€ • 80.94$ • 66.31£
78.54€ • 80.94$ • 66.31£
Carte tipărită la comandă
Livrare economică 03-17 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781138076518
ISBN-10: 1138076511
Pagini: 294
Ilustrații: 121
Dimensiuni: 156 x 234 mm
Greutate: 0.57 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Circuits and Electrical Engineering
ISBN-10: 1138076511
Pagini: 294
Ilustrații: 121
Dimensiuni: 156 x 234 mm
Greutate: 0.57 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Circuits and Electrical Engineering
Cuprins
Technology, Applications, and Computation. The Double-Base Number System (DBNS). Implementing DBNS Arithmetic. Multiplier Design Based on DBNS. The Multidimensional Logarithmic Number System (MDLNS). Binary-to-Multidigit Multidimensional Logarithmic Number System Conversion. Multidimensional Logarithmic Number System: Addition and Subtraction. Optimizing MDLNS Implementations. Integrated Circuit Implementations and RALUT Circuit Optimizations. Exponentiation Using Binary-Fermat Number Representations.
Notă biografică
Vassil S. Dimitrov earned a Ph.D degree in applied mathematics from the Bulgarian Academy of Sciences in 1995. Since 1995, he has held postdoctoral positions at the University of Windsor, Ontario (1996–1998) and Helsinki University of Technology (1999–2000). From 1998 to 1999, he worked as a research scientist for Cigital, Dulles, Virginia (formerly known as Reliable Software Technology), where he conducted research on different cryptanalysis problems. Since 2001, he has been an associate professor in the Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Alberta. His main research areas include implementation of cryptographic protocols, number theoretic algorithms, computational complexity, image processing and compression, and related topics.
Graham Jullien recently retired as the iCORE chair in Advanced Technology Information Processing Systems, and the director of the ATIPS Laboratories, in the Department of Electrical and Computer Engineering, Schulich School of Engineering, at the University of Calgary. His long-term research interests are in the areas of integrated circuits (including SoC), VLSI signal processing, computer arithmetic, high-performance parallel architectures, and number theoretic techniques. Since taking up his chair position at Calgary, he expanded his research interests to include security systems, nanoelectronic technologies, and biomedical systems. He was also instrumental, along with his colleagues, in developing an integration laboratory cluster to explore next-generation integrated microsystems. Dr. Jullien is a fellow of the Royal Society of Canada, a life fellow of the IEEE, a fellow of the Engineering Institute of Canada, and until recently, was a member of the boards of directors of DALSA Corp., CMC Microsystems, and Micronet R&D. He has published more than 400 papers in refereed technical journals and conference proceedings, and has served on the organizing and program committees of many international conferences and workshops over the past 35 years. Most recently he was the general chair for the IEEE International Symposium on Computer Arithmetic in Montpellier in 2007, and was guest coeditor of the IEEE Proceedings special issue System-on-Chip: Integration and Packaging, June 2006.
Roberto Muscedere received his BASc degree in 1996, MASc degree in 1999, and Ph.D in 2003, all from the University of Windsor in electrical engineering. During this time he also managed the microelectronics computing environment at the Research Centre for Integrated Microsystems (formally the VLSI Research Group) at the University of Windsor. He is currently an associate professor in the Electrical and Computer Engineering Department at the University of Windsor. His research areas include the implementation of high-performance and low-power VLSI circuits, full and semicustom VLSI design, computer arithmetic, HDL synthesis, digital signal processing, and embedded systems. Dr. Muscedere has been a member of the IEEE since 1994.
Graham Jullien recently retired as the iCORE chair in Advanced Technology Information Processing Systems, and the director of the ATIPS Laboratories, in the Department of Electrical and Computer Engineering, Schulich School of Engineering, at the University of Calgary. His long-term research interests are in the areas of integrated circuits (including SoC), VLSI signal processing, computer arithmetic, high-performance parallel architectures, and number theoretic techniques. Since taking up his chair position at Calgary, he expanded his research interests to include security systems, nanoelectronic technologies, and biomedical systems. He was also instrumental, along with his colleagues, in developing an integration laboratory cluster to explore next-generation integrated microsystems. Dr. Jullien is a fellow of the Royal Society of Canada, a life fellow of the IEEE, a fellow of the Engineering Institute of Canada, and until recently, was a member of the boards of directors of DALSA Corp., CMC Microsystems, and Micronet R&D. He has published more than 400 papers in refereed technical journals and conference proceedings, and has served on the organizing and program committees of many international conferences and workshops over the past 35 years. Most recently he was the general chair for the IEEE International Symposium on Computer Arithmetic in Montpellier in 2007, and was guest coeditor of the IEEE Proceedings special issue System-on-Chip: Integration and Packaging, June 2006.
Roberto Muscedere received his BASc degree in 1996, MASc degree in 1999, and Ph.D in 2003, all from the University of Windsor in electrical engineering. During this time he also managed the microelectronics computing environment at the Research Centre for Integrated Microsystems (formally the VLSI Research Group) at the University of Windsor. He is currently an associate professor in the Electrical and Computer Engineering Department at the University of Windsor. His research areas include the implementation of high-performance and low-power VLSI circuits, full and semicustom VLSI design, computer arithmetic, HDL synthesis, digital signal processing, and embedded systems. Dr. Muscedere has been a member of the IEEE since 1994.
Descriere
This book introduces the technique of computing with a recently introduced number representation and its arithmetic operations, referred to as the Multiple Base Number System (MBNS). Content includes a review of the latest research in the field. The authors take the reader through an initial introduction to computation and arithmetic with applications, to lay the groundwork for presenting the MBNS. They also deal with implementation issues of MBNS arithmetic processors targeted to selected applications in DSP and cryptography.