Na–ion Batteries
Autor L Monconduiten Limba Engleză Hardback – 6 mai 2021
Preț: 987.48 lei
Preț vechi: 1085.14 lei
-9% Nou
Puncte Express: 1481
Preț estimativ în valută:
189.04€ • 194.52$ • 159.35£
189.04€ • 194.52$ • 159.35£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781789450132
ISBN-10: 1789450136
Pagini: 384
Dimensiuni: 156 x 234 x 22 mm
Greutate: 0.69 kg
Editura: ISTE Ltd.
Locul publicării:Hoboken, United States
ISBN-10: 1789450136
Pagini: 384
Dimensiuni: 156 x 234 x 22 mm
Greutate: 0.69 kg
Editura: ISTE Ltd.
Locul publicării:Hoboken, United States
Cuprins
Introduction xi
Laure MONCONDUIT and Laurence CROGUENNEC
Chapter 1. Layered NaMO2 for the Positive Electrode 1
Shinichi KOMABA and Kei KUBOTA
1.1. Research history of layered transition metal oxides as electrode materials for Na-ion batteries until 2009 1
1.2. Crystal structures of layered materials 4
1.2.1. Crystal structures of synthesizable NaxMO2 4
1.2.2. Structural changes of O3-NaMO2 by Na extraction 7
1.2.3. Structural changes of P2-NaxMO2 by Na extraction 9
1.3. O3-type layered materials 10
1.3.1. NaMO2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 10
1.3.2. O3-Na[M,M']O2 (M, M' = transition metals) 19
1.3.3. Moist air stability of O3-NaMO2 and surface coating 24
1.4. P2-type layered materials 26
1.4.1. Practical issues of P2-type materials for Na-ion batteries 26
1.4.2. P2-Na2/3[Mn,Co,M]O2 28
1.4.3. P2-Na2/3[Mn,Fe,M]O2 29
1.4.4. P2-Na2/3[Ni,Mn,M]O2 30
1.5. Summary and prospects 32
1.6. Acknowledgments 33
1.7. References 33
Chapter 2. Polyanionic-Type Compounds as Positive Electrodes for Na-ion batteries 47
Long H. B. NGUYEN, Fan CHEN, Christian MASQUELIER and Laurence CROGUENNEC
2.1. Introduction 47
2.1.1. Oxides and polyanionic frameworks as positive electrodes for sodium ion-batteries 47
2.1.2. NASICONs and Na3V2(PO4)2F3 50
2.2. NASICON structures as model frameworks in sodium-ion battery applications 53
2.2.1. Compositional diversity from solid electrolytes to electrodes 53
2.2.2. NASICON-typed materials as electrodes for Na batteries 55
2.2.3. Na3V2(PO4)3 (NVP) 58
2.3. Na3V2(PO4)2F3 used as a model framework in sodium-ion battery applications 69
2.3.1. Structural description and compositional diversity 69
2.3.2. Na3V2(PO4)2F3: a promising active material for positive electrodes in NIBs 72
2.3.3. Oxygen substitution in Na3V2(PO4)2F3 and its effects on the electrochemical performance of substituted phases 75
2.3.4. Paving the way toward Na3V2(PO4)2F3 with superior performance 80
2.4. Conclusion and perspectives 86
2.5. References 87
Chapter 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism 101
Carolina DEL MAR SAAVEDRA RIOS, Adrian BEDA, Loic SIMONIN and Camélia MATEI GHIMBEU
3.1. Introduction 101
3.2. What is a hard carbon? 103
3.3. Hard carbon synthesis and microstructure 105
3.3.1. Synthetic precursors-based hard carbon synthesis 107
3.3.2. Bio-polymers derived hard carbon synthesis 110
3.3.3. Biomass-based hard carbon synthesis 112
3.4. Hard carbon characteristics 116
3.4.1. Hard carbon structure 116
3.4.2. Hard carbon porosity 118
3.4.3. Hard carbon surface chemistry 121
3.4.4. Hard carbon structural defects 124
3.5. Electrochemical performance 126
3.5.1. Materials performance 126
3.5.2. Full Na-ion system performance 131
3.5.3. Sodium insertion mechanisms in hard carbon 132
3.6. Conclusion 135
3.7. References 136
Chapter 4. Non-Carbonaceous Negative Electrodes in Sodium Batteries 147
Vincent GABAUDAN, Moulay Tahar SOUGRATI, Lorenzo STIEVANO and Laure MONCONDUIT
4.1. Introduction 147
4.2. Insertion materials 149
4.2.1. Insertion anodes based on titanium oxide and titanates 149
4.2.2. Insertion anodes based on transition metal chalcogenides 157
4.2.3. Insertion MXene-based anodes 159
4.2.4. Insertion organic anodes 161
4.3. Negative electrode materials based on electrochemical alloying with sodium 162
4.3.1. Silicon and germanium 163
4.3.2. Tin 165
4.3.3. Phosphorus 166
4.3.4. Antimony 170
4.3.5. Other post-transition metal elements 173
4.4. Negative electrode materials based on conversion reactions 174
4.4.1. Reaction mechanisms of CM 177
4.4.2. Approaches toward efficient anode CM for NIB 181
4.5. Conclusion 185
4.6. References 186
Chapter 5. Electrolytes for Sodium Batteries 205
Faezeh MAKHLOOGHIAZAD, Cristina POZO-GONZALO, Patrik JOHANSSON and Maria FORSYTH
5.1. Introduction 205
5.2. Liquid and solid electrolytes for sodium batteries 207
5.2.1. Organic liquid electrolytes 208
5.2.2. IL-based electrolytes 211
5.2.3. Hybrid electrolytes 215
5.2.4. Effects of additives and impurities 216
5.2.5. Solid-state electrolytes 217
5.3. Properties of IL-based electrolytes for Na batteries 223
5.3.1. Physical properties 223
5.3.2. Thermal stability 224
5.3.3. Electrochemical stability 225
5.4. Modeling IL-based electrolytes 226
5.5. Conclusion and future perspectives 229
5.6. Abbreviations 231
5.7. References 233
Chapter 6. Solid Electrolyte Interphase in Na-ion batteries 243
Le Anh MA, Ronnie MOGENSEN, Andrew J. NAYLOR and Reza YOUNESI
6.1. Introduction 243
6.1.1. The solid electrolyte interphase 243
6.1.2. Characterization of the SEI 244
6.2. Physical properties of the Na-ion SEI 247
6.2.1. Electrochemical stability 247
6.2.2. Mechanical properties 248
6.2.3. Dissolution of SEI components 249
6.3. Comparisons of SEI in sodium- and lithium-based electrolytes 252
6.3.1. Formation and composition 252
6.3.2. Resistance 258
6.4. Conclusion 261
6.5. References 261
Chapter 7. Batteries Containing Prussian Blue Analogue Electrodes 265
Colin D. WESSELLS
7.1. Introduction 265
7.1.1. Chapter introduction 265
7.1.2. History of Prussian blue 265
7.1.3. Physical characteristics: structure, composition and morphology 266
7.1.4. Synthetic methods 270
7.2. Electrochemistry of PBAs 273
7.2.1. Mechanism and resulting characteristics 273
7.2.2. Reaction potentials 275
7.2.3. PBA cathodes 278
7.2.4. PBA anodes 286
7.3. Prussian blue batteries 292
7.3.1. Cells containing two PBA electrodes 292
7.3.2. Cells containing one PBA electrode 300
7.3.3. Challenges for PBA batteries 304
7.4. Conclusion and future outlook 306
7.5. References 306
Chapter 8. The Design, Performance and Commercialization of Faradion's Non-aqueous Na-ion Battery Technology 313
Ashish RUDOLA, Fazlil COOWAR, Richard HEAP and Jerry BARKER
8.1. Introduction 313
8.2. Experimental 315
8.2.1. Active materials 315
8.2.2. Electrode fabrication 318
8.2.3. Pouch cell fabrication 319
8.2.4. Faradion electrolyte 320
8.3. Cell performance 321
8.3.1. Half-cell cycling 321
8.3.2. Full Na-ion cell cycling: curves and stability 322
8.3.3. Rate capability 323
8.3.4. Temperature studies 324
8.3.5. Three-electrode cell studies 325
8.4. Safety and zero energy storage and transportation 327
8.5. Scale-up and prototyping 331
8.6. Demonstrators: stacks and packs 332
8.7. Business and IP strategy 335
8.8. Cost analysis 338
8.9. Future developments 338
8.10. Conclusion 342
8.11. Acknowledgments 343
8.12. References 343
List of Authors 345
Index 349