Nested Simulations: Theory and Application: Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics
Autor Maximilian Kleinen Limba Engleză Paperback – 27 mar 2024
Din seria Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics
- Preț: 339.71 lei
- Preț: 372.06 lei
- 15% Preț: 461.21 lei
- Preț: 374.89 lei
- Preț: 375.43 lei
- Preț: 442.18 lei
Preț: 468.69 lei
Nou
Puncte Express: 703
Preț estimativ în valută:
89.69€ • 94.57$ • 74.67£
89.69€ • 94.57$ • 74.67£
Carte tipărită la comandă
Livrare economică 10-24 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783658438524
ISBN-10: 3658438525
Ilustrații: XVII, 137 p. 18 illus., 17 illus. in color. Textbook for German language market.
Dimensiuni: 148 x 210 mm
Greutate: 0.2 kg
Ediția:2024
Editura: Springer Fachmedien Wiesbaden
Colecția Springer Spektrum
Seria Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics
Locul publicării:Wiesbaden, Germany
ISBN-10: 3658438525
Ilustrații: XVII, 137 p. 18 illus., 17 illus. in color. Textbook for German language market.
Dimensiuni: 148 x 210 mm
Greutate: 0.2 kg
Ediția:2024
Editura: Springer Fachmedien Wiesbaden
Colecția Springer Spektrum
Seria Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics
Locul publicării:Wiesbaden, Germany
Cuprins
Introduction.- Basic Concepts, Probability Inequalities and Limit Theorems.- Almost Sure Convergence of Moment-Based Estimators.- Almost Sure Convergence of Quantile-Based Estimators.- Non Parametric Confidence Intervals for Quantiles.- Numerical Analysis.- Conclusion.
Notă biografică
Maximilian Klein holds a PhD in mathematics from the University of Augsburg. Currently, he works as a portfolio manager at an asset management company.
Textul de pe ultima copertă
Maximilian Klein analyses nested Monte Carlo simulations for the approximation of conditional expected values. Thereby, the book deals with two general risk functional classes for conditional expected values, on the one hand the class of moment-based estimators (notable examples are the probability of a large loss or the lower partial moments) and on the other hand the class of quantile-based estimators. For both functional classes, the almost sure convergence of the respective estimator is proven and the underlying convergence speed is quantified. In particular, the class of quantile-based estimators has important practical consequences especially for life insurance companies since the Value-at-Risk falls into this class and thus covers the solvency capital requirement problem. Furthermore, a novel non parametric confidence interval method for quantiles is presented which takes the additional noise of the inner simulation into account.
About the author
Maximilian Klein holds a PhD in mathematics from the University of Augsburg. Currently, he works as a portfolio manager at an asset management company.
Maximilian Klein holds a PhD in mathematics from the University of Augsburg. Currently, he works as a portfolio manager at an asset management company.