Cantitate/Preț
Produs

Neural Network-Based Estimation of Strong Ground Motion Parameters

Autor C .R. Arjun
en Limba Engleză Paperback – 6 ian 2013
Seismic evaluation of existing facilities and design of earthquake-resistant structures requires estimation of strong ground motion parameters. Ground motion prediction equations are derived for estimating strong ground motion parameters. Traditionally, ground motion prediction equations are developed using statistical regression analyses. This book presents a very promising application of the powerful and versatile neural network approach to the derivation of ground motion prediction equations using Japanese earthquake records and site characteristics. Multi-layer perceptron neural network models with back-propagation learning scheme have been developed to predict strong ground motion parameters that are of primary significance in earthquake engineering using the actual seismic data without any simplification and assumptions. Statistics of the results presented indicate that artificial neural network is capable of learning and representing the local variations quite accurately. This book is intended to help structural engineers in selection of appropriate characterization of ground motion for engineering applications that are used in seismic analysis and design.
Citește tot Restrânge

Preț: 31444 lei

Nou

Puncte Express: 472

Preț estimativ în valută:
6018 6273$ 5010£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783659275050
ISBN-10: 3659275050
Pagini: 88
Dimensiuni: 152 x 229 x 5 mm
Greutate: 0.14 kg
Editura: LAP Lambert Academic Publishing AG & Co. KG
Colecția LAP Lambert Academic Publishing

Notă biografică

Arjun C.R., received his M.Tech degree in Earthquake Engineering with specialization in Structural Dynamics from IIT Roorkee. His areas of interest include strong ground motion studies, structural dynamics, earthquake-resistant design and design of machine foundations. He is a life member of Indian Society of Earthquake Technology (ISET).