New Trends in Discrete and Computational Geometry: Algorithms and Combinatorics, cartea 10
Editat de Janos Pachen Limba Engleză Paperback – 3 oct 2013
Din seria Algorithms and Combinatorics
- 18% Preț: 1123.67 lei
- Preț: 387.38 lei
- 15% Preț: 639.08 lei
- 15% Preț: 658.22 lei
- 18% Preț: 965.34 lei
- 15% Preț: 649.22 lei
- 18% Preț: 781.00 lei
- 18% Preț: 950.96 lei
- 18% Preț: 953.35 lei
- 18% Preț: 897.65 lei
- Preț: 512.18 lei
- 15% Preț: 638.89 lei
- 18% Preț: 897.65 lei
- 24% Preț: 912.87 lei
- 18% Preț: 979.70 lei
- 18% Preț: 967.22 lei
- 20% Preț: 500.19 lei
- 15% Preț: 593.08 lei
- Preț: 399.50 lei
- 15% Preț: 644.18 lei
- 18% Preț: 972.42 lei
- Preț: 386.00 lei
- 15% Preț: 589.14 lei
- 15% Preț: 642.51 lei
- 15% Preț: 656.43 lei
- Preț: 381.43 lei
Preț: 391.61 lei
Nou
Puncte Express: 587
Preț estimativ în valută:
74.94€ • 76.75$ • 62.34£
74.94€ • 76.75$ • 62.34£
Carte tipărită la comandă
Livrare economică 19 martie-02 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642634499
ISBN-10: 3642634494
Pagini: 356
Ilustrații: XI, 340 p. 9 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.5 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Algorithms and Combinatorics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642634494
Pagini: 356
Ilustrații: XI, 340 p. 9 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.5 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Algorithms and Combinatorics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Combinatorics and Algorithms of Arrangements.- 1. Introduction.- 2. Arrangements of Curves in the Plane.- 3. Lower Envelopes and Davenport-Schinzel Sequences.- 4. Faces in Arrangements.- 5. Arrangements in Higher Dimensions.- 6. Summary.- References.- II. Backwards Analysis of Randomized Geometric Algorithms.- 1. Introduction.- 2. Delaunay Triangulations of Convex Polygons.- 3. Intersecting Line Segments.- 4. Constructing Planar Convex Hulls.- 5. Backwards Analysis of QUICKSORT.- 6. A Bad Example.- 7. Linear Programming for Small Dimension.- 8. Welzl’s Minidisk Algorithm.- 9. Clarkson’s Backwards Analysis of the Conflict Graph Based on the Convex Hull Algorithm.- 10. Odds and Ends.- References.- III. Epsilon-Nets and Computational Geometry.- 1. Range Spaces and ?-Nets.- 2. Geometric Range Spaces.- 3. A Sample of Applications.- 4. Removing Logarithms.- 5. Removing the Randomization.- References.- IV. Complexity of Polytope Volume Computation.- 1. Jumps of the Derivatives.- 2. Exact Volume Computation is Hard.- 3. Volume Approximation.- References.- V. Allowable Sequences and Order Types in Discrete and Computational Geometry.- 1. Introduction.- 2. Combinatorial Types of Configurations in the Plane and Allowable Sequences.- 3. Arrangements of Lines and Pseudolines.- 4. Applications of Allowable Sequences.- 5. Order Types of Points in Rd and “Geometric Sorting”.- 6. The Number of Order Types in Rd.- 7. Isotopy and Realizability Questions.- 8. Lattice Realization of Order Types and the Problem of Robustness in Computational Geometry.- References.- VI. Hyperplane Approximation and Related Topics.- 1. Introduction.- 2. MINSUM Problem: Orthogonal L1-Fit.- 3. MINSUM Problem: Vertical L1-Fit.- 4. MINMAX Problem: Orthogonal L?-Fit.- 5. MINMAX Problem: VerticalL?-Fit.- 6. Related Issues.- References.- VII. Geometric Transversal Theory.- 1. Introduction.- 2. Hadwiger-Type Theorems.- 3. The Combinatorial Complexity of the Space of Transversals.- 4. Translates of a Convex Set.- 5. Transversal Algorithms.- 6. Other Directions.- References.- VIII. Hadwiger-Levi’s Covering Problem Revisited.- 0. Introduction.- 1. On I0(K) and I?(K).- 2. On Il(K) and k-fold Illumination.- 3. Some Simple Remarks on H(B).- 4. On Convex Bodies with Finitely Many Corner Points.- 5. Solution of Hadwiger-Levi’s Covering Problem for Convex Polyhedra with Affine Symmetry.- References.- IX. Geometric and Combinatorial Applications of Borsuk’s Theorem.- 1. Introduction.- 2. Van Kampen-Flores Type Results.- 3. The Ham-Sandwich Theorem.- 4. Centrally Symmetric Polytopes.- 5. Kneser’s Conjecture.- 6. Sphere Coverings.- References.- X. Recent Results in the Theory of Packing and Covering.- 1. Introduction.- 2. Preliminaries and Basic Concepts.- 3. A Review of Some Classical Results in the Plane.- 4. Economical Packing in and Covering of the Plane.- 5. Multiple Packing and Covering.- 6. Some Computational Aspects of Packing and Covering.- 7. Restrictions on the Number of Neighbors in a Packing.- 8. Selected Topics in 3 Dimensions.- References.- XI. Recent Developments in Combinatorial Geometry.- 1. The Distribution of Distances.- 2. Graph Dimensions.- 3. Geometric Graphs.- 4. Arrangements of Lines in Space.- References.- XII. Set Theoretic Constructions in Euclidean Spaces.- 0. Introduction.- 1. Simple Transfinite Constructions.- 2. Closed Sets or Better Well-Orderings.- 3. Extending the Coloring More Carefully.- 4. The Use of the Continuum Hypothesis.- 5. The Infinite Dimensional Case.- 6. Large Paradoxical Sets in Another Sense.- References.- AuthorIndex.