Cantitate/Preț
Produs

Nonabelian Jacobian of Projective Surfaces: Geometry and Representation Theory: Lecture Notes in Mathematics, cartea 2072

Autor Igor Reider
en Limba Engleză Paperback – 15 mar 2013
The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This work’s main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an efficient tool for using the representation theory to systematically address various algebro-geometric problems. It also shows how to construct new invariants of representation theoretic origin on smooth projective surfaces.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 37318 lei

Nou

Puncte Express: 560

Preț estimativ în valută:
7143 7444$ 5946£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642356612
ISBN-10: 3642356613
Pagini: 224
Ilustrații: VIII, 227 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.32 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 Introduction.- 2 Nonabelian Jacobian J(X; L; d): main properties.- 3 Some properties of the filtration H.- 4 The sheaf of Lie algebras G.- 5 Period maps and Torelli problems.- 6 sl2-structures on F.- 7 sl2-structures on G.- 8 Involution on G.- 9 Stratification of T.- 10 Configurations and theirs equations.- 11 Representation theoretic constructions.- 12 J(X; L; d) and the Langlands Duality.

Recenzii

From the reviews:
“The book is well written, listing the main ideas in sections, and giving the successive results as they appear. The idea of a Jacobian on surfaces is new and important, and this book is the initiation of the study of this interesting object.” (Arvid Siqveland, Mathematical Reviews, November, 2013)

Textul de pe ultima copertă

The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces.
Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups.
This work’s main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an efficient tool for using the representation theory to systematically address various algebro-geometric problems. It also shows how to construct new invariants of representation theoretic origin on smooth projective surfaces.

Caracteristici

Includes supplementary material: sn.pub/extras