Nonlinear Valuation and Non-Gaussian Risks in Finance
Autor Dilip B. Madan, Wim Schoutensen Limba Engleză Hardback – 2 feb 2022
Preț: 696.79 lei
Preț vechi: 765.70 lei
-9% Nou
Puncte Express: 1045
Preț estimativ în valută:
133.39€ • 138.86$ • 109.81£
133.39€ • 138.86$ • 109.81£
Carte disponibilă
Livrare economică 11-25 ianuarie 25
Livrare express 28 decembrie 24 - 03 ianuarie 25 pentru 37.61 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781316518090
ISBN-10: 1316518094
Pagini: 281
Dimensiuni: 175 x 250 x 20 mm
Greutate: 0.65 kg
Ediția:Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
ISBN-10: 1316518094
Pagini: 281
Dimensiuni: 175 x 250 x 20 mm
Greutate: 0.65 kg
Ediția:Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
Cuprins
1. Introduction; 2. Univariate risk representation using arrival rates; 3. Estimation of univariate arrival rates from time series data; 4. Estimation of univariate arrival rates from option surface data; 5. Multivariate arrival rates associated with prespecified univariate arrival rates; 6. The measure-distorted valuation as a financial objective; 7. Representing market realities; 8. Measure-distorted value-maximizing hedges in practice; 9. Conic hedging contributions and comparisons; 10. Designing optimal univariate exposures; 11. Multivariate static hedge designs using measure-distorted valuations; 12. Static portfolio allocation theory for measure-distorted valuations; 13. Dynamic valuation via nonlinear martingales and associated backward stochastic partial integro-differential equations; 14. Dynamic portfolio theory; 15. Enterprise valuation using infinite and finite horizon valuation of terminal liquidation; 16. Economic acceptability; 17. Trading Markovian models; 18. Market implied measure-distortion parameters; References; Index.
Notă biografică
Descriere
Explore how market valuation must abandon linearity to deliver efficient resource allocation.