Cantitate/Preț
Produs

Nonparametric Bayesian Inference in Biostatistics: Frontiers in Probability and the Statistical Sciences

Editat de Riten Mitra, Peter Müller
en Limba Engleză Hardback – 7 aug 2015
As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.  
Citește tot Restrânge

Din seria Frontiers in Probability and the Statistical Sciences

Preț: 59801 lei

Preț vechi: 74751 lei
-20% Nou

Puncte Express: 897

Preț estimativ în valută:
11444 12103$ 9546£

Carte tipărită la comandă

Livrare economică 24-30 decembrie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319195179
ISBN-10: 3319195174
Pagini: 448
Ilustrații: XVII, 448 p. 96 illus., 47 illus. in color.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 1.02 kg
Ediția:1st ed. 2015
Editura: Springer International Publishing
Colecția Springer
Seria Frontiers in Probability and the Statistical Sciences

Locul publicării:Cham, Switzerland

Public țintă

Research

Cuprins

Part I Introduction.- Bayesian Nonparametric Models.- Bayesian Nonparametric Biostatistics.- Part II Genomics and Proteomics.- Bayesian Shape Clustering.- Estimating Latent Cell Subpopulations with Bayesian Feature Allocation Models.- Species Sampling Priors for Modeling Dependence: An Application to the Detection of Chromosomal Aberrations.- Modeling the Association Between Clusters of SNPs and Disease Responses.- Bayesian Inference on Population Structure: from Parametric to Nonparametric Modeling.- Bayesian Approaches for Large Biological Networks.- Nonparametric Variable Selection, Clustering and Prediction for Large Biological Datasets.- Part III Survival Analysis.- Markov Processes in Survival Analysis.- Bayesian Spatial Survival Models.- Fully Nonparametric Regression Modelling of Misclassified Censored Time-to-Event Data.- Part IV Random Functions and Response Surfaces.- Neuronal Spike Train Analysis Using Gaussian Process Models.- Bayesian Analysis of Curves Shape Variation through Registration and Regression.- Biomarker-Driven Adaptive Design.- Bayesian Nonparametric Approaches for ROC Curve Inference.- Part V Spatial Data.- Spatial Bayesian Nonparametric Methods.- Spatial Species Sampling and Product Partition Models.- Spatial Boundary Detection for Areal Counts.- A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs.- Bayesian Nonparametrics for Missing Data in Longitudinal Clinical Trials.

Notă biografică

Riten Mitra is Assistant Professor in the Department of Bioinformatics
and Biostatistics at University of Louisville. His research interests
include Bayesian graphical models and nonparametric Bayesian methods with a special emphasis on applications in genomics and
bioinformatics. 
Peter Mueller is Professor in the Department of Mathematics and the
Department of Statistics & Data Science at the University of Texas at Austin. He has published widely on nonparametric Bayesian statistics, with an emphasis on applications in biostatistics and bioinformatics.


Textul de pe ultima copertă

As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

Riten Mitra is Assistant Professor in the Department of Bioinformatics and Biostatistics at University of Louisville. His research interests include Bayesian graphical models and nonparametric Bayesian methods with a special emphasis on applications in genomics and bioinformatics.


Peter Mueller is Professor in the Department of Mathematics and the Department of Statistics & Data Science at the University of Texas at Austin. He has published widely on nonparametric Bayesian statistics, with an emphasis on applications in biostatistics and bioinformatics.

Caracteristici

First comprehensive review of a fast growing field Accessible to readers with a working graduate level knowledge of statistics and interest in Bayesian inference and biomedical applications Most chapters include substantial applications that illustrate methods and models by addressing real research questions Proceeds of this book go to the International Society for Bayesian Analysis/Section on Bayesian Nonparametrics (ISBA/BNP) Chapters cover applications in clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curves