Number Theory: New York Seminar 1991–1995
Editat de David V. Chudnovsky, Gregory V. Chudnovsky, Melvyn B. Nathansonen Limba Engleză Paperback – 19 sep 1996
Preț: 641.03 lei
Preț vechi: 754.15 lei
-15% Nou
Puncte Express: 962
Preț estimativ în valută:
122.72€ • 126.28$ • 103.44£
122.72€ • 126.28$ • 103.44£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387948263
ISBN-10: 0387948260
Pagini: 297
Ilustrații: X, 297 p. 12 illus.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 0387948260
Pagini: 297
Ilustrații: X, 297 p. 12 illus.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Sums of Four Squares.- 2 On the Number of Co-Prime-Free Sets.- 3 The Primary Role of Modular Equations.- 4 Approximation Methods in Transcendental Function Computations and Some Physical Applications.- 5 Diophantine Approximation Problem Arising From VLSI Design.- 6 Linear Diophantine Problems.- 7 On the Sum of the Reciprocals of the Differences Between Consecutive Primes.- 8 The Smallest Maximal Set of Pairwise Disjoint Partitions.- 9 Sum Set Cardinalities of Line Restricted Planar Sets.- 10 On Solvability of a System of Two Boolean Linear Equations.- 11 Brauer Number and Twisted Fermat Motives.- 12 A Remark on a Paper of Erdös and Nathanson.- 13 Towards a Classification of Hilbert Modular Threefolds.- 14 Special Theta Relations.- 15 Minimal Bases and g-adic Representations of Integers.- 16 Finite Graphs and the Number of Sums and Products.- 17 Hilbert’s Theorem 94 and Function Fields.- 18 Some Applications of Probability to Additive Number Theory and Harmonic Analysis.- 19 Quadratic Irrationals and Continued Fractions.- 20 Progression Bases for Finite Cyclic Groups.- 21 Sums of Finite Sets.- 22 Four Squares with Few Squares.