Cantitate/Preț
Produs

Optimization and Optimal Control: Proceedings of a Conference Held at Oberwolfach, March 16–22, 1980: Lecture Notes in Control and Information Sciences, cartea 30

Editat de A. Auslender, W. Oettli, J. Stoer
en Limba Engleză Paperback – feb 1981

Din seria Lecture Notes in Control and Information Sciences

Preț: 38222 lei

Nou

Puncte Express: 573

Preț estimativ în valută:
7318 7621$ 6072£

Carte tipărită la comandă

Livrare economică 12-26 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540106272
ISBN-10: 3540106278
Pagini: 268
Ilustrații: VIII, 257 p.
Dimensiuni: 170 x 244 x 14 mm
Greutate: 0.43 kg
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Control and Information Sciences

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Quasi-convex duality.- Some differentiability properties of quasiconvex functions ?n.- On optimality conditions for infinite programs.- Optimality conditions for discrete nonlinear norm-approximation problems.- Feasible variable metric method for nonlinearly constrained problems.- A note on convergence proofs for Shor-Khachian-Methods.- A view of line-searches.- II-Approximation and decomposition of large-scale problems.- On the existence of Lagrange multipliers in nonlinear programming in Banach spaces.- Convexifiable pseudoconvex and strictly pseudoconvex C2-functions.- Organization, test, and performance of optimization programs.- Han's method without solving QP.- Necessary optimality conditions for differential games with transition surfaces.- Regularization of Lagrange multipliers for time delay systems with fixed final state.- Numerical solution of linear and nonlinear parabolic control problems.- Survey on existence results in nonlinear optimal stochastic control of semimartingales.- Time-minimal controllability in the view of optimization.- On the choice of minimization algorithms in parametric optimal control problems.- Strong duality, weak duality and penalization for a state constrained parabolic control problem.- Finite difference approximations to constrained optimal control problems.