Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems: École d’Été de Probabilités de Saint-Flour XXXVIII-2008: Lecture Notes in Mathematics, cartea 2033
Autor Vladimir Koltchinskiien Limba Engleză Paperback – 29 iul 2011
Din seria Lecture Notes in Mathematics
- Preț: 459.92 lei
- Preț: 121.41 lei
- 17% Preț: 360.42 lei
- Preț: 175.68 lei
- Preț: 197.00 lei
- Preț: 279.76 lei
- Preț: 477.65 lei
- 17% Preț: 361.88 lei
- Preț: 252.37 lei
- Preț: 353.99 lei
- Preț: 138.88 lei
- Preț: 152.61 lei
- Preț: 116.67 lei
- Preț: 102.77 lei
- Preț: 119.02 lei
- 17% Preț: 365.52 lei
- Preț: 396.75 lei
- 17% Preț: 362.12 lei
- Preț: 396.11 lei
- Preț: 357.78 lei
- 17% Preț: 362.31 lei
- Preț: 403.80 lei
- 17% Preț: 361.70 lei
- Preț: 499.87 lei
- Preț: 457.03 lei
- Preț: 395.90 lei
- Preț: 487.57 lei
- Preț: 424.01 lei
- Preț: 487.57 lei
- Preț: 330.55 lei
- Preț: 325.75 lei
- Preț: 350.30 lei
- Preț: 331.31 lei
- Preț: 408.37 lei
- Preț: 328.25 lei
- Preț: 421.28 lei
- Preț: 276.08 lei
- Preț: 424.60 lei
- Preț: 422.05 lei
- Preț: 505.01 lei
- Preț: 422.05 lei
- Preț: 274.93 lei
- Preț: 335.16 lei
- Preț: 422.27 lei
- Preț: 497.49 lei
- Preț: 272.81 lei
- Preț: 428.04 lei
- Preț: 376.22 lei
- Preț: 427.10 lei
- Preț: 325.92 lei
Preț: 492.40 lei
Preț vechi: 579.30 lei
-15% Nou
Puncte Express: 739
Preț estimativ în valută:
94.24€ • 98.12$ • 79.64£
94.24€ • 98.12$ • 79.64£
Carte tipărită la comandă
Livrare economică 10-24 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642221460
ISBN-10: 3642221467
Pagini: 268
Ilustrații: IX, 254 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.23 kg
Ediția:2011
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Mathematics, École d'Été de Probabilités de Saint-Flour
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642221467
Pagini: 268
Ilustrații: IX, 254 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.23 kg
Ediția:2011
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Mathematics, École d'Été de Probabilités de Saint-Flour
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchRecenzii
From the reviews:
“The book is an introduction to the general theory of empirical risk minimization with an emphasis on excess risk bounds and oracle inequalities in penalized problems. … The book is interesting and useful for students as well as for professionals in the field of probability theory, statistics, and their applications.” (Pavel Stoynov, Zentralblatt MATH, Vol. 1223, 2011)
“The book is an introduction to the general theory of empirical risk minimization with an emphasis on excess risk bounds and oracle inequalities in penalized problems. … The book is interesting and useful for students as well as for professionals in the field of probability theory, statistics, and their applications.” (Pavel Stoynov, Zentralblatt MATH, Vol. 1223, 2011)
Textul de pe ultima copertă
The purpose of these lecture notes is to provide an introduction to the general theory of empirical risk minimization with an emphasis on excess risk bounds and oracle inequalities in penalized problems. In recent years, there have been new developments in this area motivated by the study of new classes of methods in machine learning such as large margin classification methods (boosting, kernel machines). The main probabilistic tools involved in the analysis of these problems are concentration and deviation inequalities by Talagrand along with other methods of empirical processes theory (symmetrization inequalities, contraction inequality for Rademacher sums, entropy and generic chaining bounds). Sparse recovery based on l_1-type penalization and low rank matrix recovery based on the nuclear norm penalization are other active areas of research, where the main problems can be stated in the framework of penalized empirical risk minimization, and concentration inequalities and empirical processes tools have proved to be very useful.
Caracteristici
Provides a unified framework for machine learning problems (such as large margin classification), sparse recovery and low rank matrix problems Develops a variety of probabilistic inequalities for empirical processes needed to obtain error bounds in machine learning and sparse recovery Develops a comprehensive theory of excess risk bounds and oracle inequalities for penalized empirical risk minimization Includes supplementary material: sn.pub/extras