Orbital Mechanics for Engineering Students: Revised Reprint: Aerospace Engineering
Autor Howard D. Curtisen Limba Engleză Paperback – 4 sep 2020
- Provides a new chapter on the circular restricted 3-body problem, including low-energy trajectories
- Presents the latest on interplanetary mission design, including non-Hohmann transfers and lunar missions
- Includes new and revised examples and sample problems
Preț: 460.51 lei
Preț vechi: 644.19 lei
-29% Nou
Puncte Express: 691
Preț estimativ în valută:
88.14€ • 92.98$ • 73.45£
88.14€ • 92.98$ • 73.45£
Carte tipărită la comandă
Livrare economică 26 decembrie 24 - 09 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128240250
ISBN-10: 0128240253
Pagini: 780
Dimensiuni: 191 x 235 mm
Greutate: 1.94 kg
Ediția:4
Editura: ELSEVIER SCIENCE
Seria Aerospace Engineering
ISBN-10: 0128240253
Pagini: 780
Dimensiuni: 191 x 235 mm
Greutate: 1.94 kg
Ediția:4
Editura: ELSEVIER SCIENCE
Seria Aerospace Engineering
Public țintă
Undergraduate students in aerospace, astronautical, mechanical engineering, and engineering physics; related professional aerospace and space engineering fieldsCuprins
1. Dynamics of Point Masses 2. The Two-Body Problem 3. Orbital Position as a Function of Time 4. Orbits in Three Dimensions 5. Preliminary Orbit Determination 6. Orbital Maneuvers 7. Relative Motion and Rendezvous 8. Interplanetary Trajectories 9. Lunar Trajectories 10. Introduction to Orbital Perturbations 11. Rigid Body Dynamics 12. Spacecraft Attitude Dynamics 13. Rocket Vehicle Dynamics
Appendix A Physical Data B A Road Map C Numerical Integration of the N-Body Equations of Motion D MATLAB Scripts E Gravitational Potential of a Sphere F Computing the Difference Between Nearly Equal Numbers G Direction Cosine Matrix in Terms of the Unit Quaternion
Appendix A Physical Data B A Road Map C Numerical Integration of the N-Body Equations of Motion D MATLAB Scripts E Gravitational Potential of a Sphere F Computing the Difference Between Nearly Equal Numbers G Direction Cosine Matrix in Terms of the Unit Quaternion