Cantitate/Preț
Produs

Parallel Diffractive Multi-beam Ultrafast Laser Microprocessing

Autor Zheng Kuang
en Limba Engleză Paperback – 13 iun 2012

Ultrafast lasers have been widely employed for material micro/nano processing with little thermal damage. Due to the ultra high intensity of ultrashort pulses, nonlinear absorption can be induced at the focus leading to highly localised material ablation or modification. This is now opening up applications ranging from integrated optics, through multi-photon induced refractive index engineering to precision surface micro-structuring. To ensure the non-thermal processing, input pulse energy must be kept around micro-joule level. However, running at kilohertz repetition rate, many ultrafast laser systems can provide milli-joule level output. Therefore, significant energy attenuation causes a great deal of energy loss. With this limitation in mind, a multi-beam ultrafast laser processing, where the milli-joule output is split into many desired diffracted beams, is proposed in this book. The multi-beam patterns are generated by phase modulation through a Spatial Light Modulator (SLM) and can be applied in real time with synchronized scanning methods. The results demonstrate high precision parallel ultrafast laser micro/nano fabrication with greatly increased efficiency and throughput.

Citește tot Restrânge

Preț: 41534 lei

Preț vechi: 45146 lei
-8% Nou

Puncte Express: 623

Preț estimativ în valută:
7949 8228$ 6718£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783659157769
ISBN-10: 3659157767
Pagini: 200
Dimensiuni: 152 x 229 x 12 mm
Greutate: 0.3 kg
Editura: LAP LAMBERT ACADEMIC PUBLISHING AG & CO KG
Colecția LAP Lambert Academic Publishing

Notă biografică

Dr Zheng Kuang was born in 1982 in China. He obtained his MSc(Eng) and PhD in 2006 and 2010 respectively in Laser Engineering from the University of Liverpool and commenced his employment as a Post-doc Researcher with the University. His research interests include Laser Micro/nano Processing, Diffractive Optical Elements, and Laser Beam Modulation.