Cantitate/Preț
Produs

Parallel Robots With Unconventional Joints: Kinematics and Motion Planning: Parallel Robots: Theory and Applications

Autor Patrick Grosch, Federico Thomas
en Limba Engleză Hardback – 29 mar 2019
This book shows how, through certain geometric transformations, some of the standard joints used in parallel robots can be replaced with lockable or non-holonomic joints. These substitutions allow for reducing the number of legs, and hence the number of actuators needed to control the robot, without losing the robot's ability to bring its mobile platform to the desired configuration. The kinematics of the most representative examples of these new designs are analyzed and their theoretical features verified through simulations and practical implementations.  
Citește tot Restrânge

Preț: 62393 lei

Preț vechi: 73403 lei
-15% Nou

Puncte Express: 936

Preț estimativ în valută:
11943 12523$ 9868£

Carte disponibilă

Livrare economică 08-22 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030113032
ISBN-10: 3030113035
Pagini: 146
Ilustrații: VIII, 107 p. 52 illus., 42 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.32 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Parallel Robots: Theory and Applications

Locul publicării:Cham, Switzerland

Cuprins

1 Introduction: lockable and non-holonomic joints.- 1.1 Motivation.- 1.2 Precursors.- 1.3 Organization of this book.- References.- 2 Parallel robots with lockable revolute joints.- 2.1 Kinematics of the 4RbRPS parallel robot.- 2.2 Maneuvers.- 2.3 Motion planning.- 2.4 Hardware implementation.- 2.5 Software implementation.- References.- 3 Spherical non-holonomic joints.- 3.1 Under-actuated parallel robots with spherical non-holonomic joints.- 3.2 Implementation of spherical non-holonomic joints.- References.- 4 Kinematics of the 3SnPU spatial robot.- 4.1 The 3SnPU robot.- 4.2 Instantaneous kinematics.- 4.3 Statics analysis.- 4.4 Singularities.- 4.5 Controllability.- 4.6 Example.- References.- 5 Motion planning for the 3SnPU robot.- 5.1 Motion planning.- 5.2 Using truncated series.- 5.3 Example.- References.- 6 Kinematics of the Sn-2UPS spherical robot.- 6.1 Kinematic model.- 6.2 Deriving a bilinear model.- 6.3 Singularities.- 6.4 A, B, and rotations in R4.- 6.5 Workspace computation.- 7 Motion planning for the Sn-2UPS robot.- 7.1 Kinematic model.- 7.2 Three-move motion planner.- 7.3 Two-move motion planner.- 7.4 Single-move motion planner.- 7.5 Example.- 7.6 Implementation.- References.- 8 Conclusions.

Recenzii

“This book should be of interest to practicing and research engineers as well as Ph.D. students from the field of mechanical engineering and, in particular, from robotics.” (Clementina Mladenova, zbMATH 1447.70001, 2020)

Textul de pe ultima copertă

This book shows how, through certain geometric transformations, some of the standard joints used in parallel robots can be replaced with lockable or non-holonomic joints. These substitutions allow for reducing the number of legs, and hence the number of actuators needed to control the robot, without losing the robot's ability to bring its mobile platform to the desired configuration. The kinematics of the most representative examples of these new designs are analyzed and their theoretical features verified through simulations and practical implementations.  

Caracteristici

Introduces the use of non-holonomic and/or lockable joints in parallel robots as a new research area Describes and analyses new robot designs with practical interest Emphasises practical implementation issues