Cantitate/Preț
Produs

Period Spaces for p–divisible Groups (AM–141), Volume 141: Annals of Mathematics Studies

Autor Michael Rapoport, Thomas Zink
en Limba Engleză Paperback – 29 iul 1996
In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples.
Citește tot Restrânge

Din seria Annals of Mathematics Studies

Preț: 71526 lei

Preț vechi: 92891 lei
-23% Nou

Puncte Express: 1073

Preț estimativ în valută:
13693 14082$ 11360£

Carte tipărită la comandă

Livrare economică 20 februarie-06 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780691027814
ISBN-10: 0691027811
Pagini: 354
Dimensiuni: 156 x 234 x 23 mm
Greutate: 0.67 kg
Editura: Princeton University Press
Seria Annals of Mathematics Studies

Locul publicării:Princeton, United States

Notă biografică


Descriere

A monograph that associates p-adic period domains to arbitrary reductive groups. Using the concept of rigid-analytic period maps, it investigates the relation of p-adic period domains to moduli space of p-divisible groups. It also establishes non-archimedean uniformization theorems for general Shimura varieties.