Cantitate/Preț
Produs

Physical Models for Quantum Wires, Nanotubes, and Nanoribbons

Editat de Jean-Pierre Leburton
en Limba Engleză Hardback – 31 aug 2023
Quantum wires are artificial structures characterized by nanoscale cross sections that contain charged particles moving along a single degree of freedom. With electronic motions constrained into standing modes along with the two other spatial directions, they have been primarily investigated for their unidimensional dynamics of quantum-confined charge carriers, which eventually led to broad applications in large-scale nanoelectronics. This book is a compilation of articles that span more than 30 years of research on developing comprehensive physical models that describe the physical properties of these unidimensional semiconductor structures. The articles address the effect of quantum confinement on lattice vibrations, carrier scattering rates, and charge transport as well as present practical examples of solutions to the Boltzmann equation by analytical techniques and by numerical simulations such as the Monte Carlo method. The book also presents topics on quantum transport and spin effects in unidimensional molecular structures such as carbon nanotubes and graphene nanoribbons in terms of non-equilibrium Green’s function approaches and density functional theory.
Citește tot Restrânge

Preț: 152054 lei

Preț vechi: 205277 lei
-26% Nou

Puncte Express: 2281

Preț estimativ în valută:
29101 30700$ 24252£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789814877916
ISBN-10: 9814877913
Pagini: 570
Ilustrații: 13 Tables, black and white; 33 Illustrations, color; 138 Illustrations, black and white
Dimensiuni: 152 x 229 x 33 mm
Greutate: 1.21 kg
Ediția:1
Editura: Jenny Stanford Publishing
Colecția Jenny Stanford Publishing

Public țintă

Postgraduate

Cuprins

Part I: Semiconductor Quantum Wires  1. Size Effects on Polar Optical Phonon Scattering of One-Dimensional and Two-Dimensional Electron Gas in Synthetic Semiconductors  2. Self-Consistent Polaron Scattering Rates in Quasi-One-Dimensional Structures3. Plasmon Dispersion Relation of a Quasi-One-Dimensional Electron Gas  4. Size Effects in Multisubband Quantum Wire Structures  5. Impurity Scattering with Semiclassical Screening in Multiband Quasi-One-Dimensional Systems  6. Resonant Intersubband Optic Phonon Scattering in Quasi-One-Dimensional Structures  7. Intersubband Population Inversion in Quantum Wire Structures  8. Intersubband Resonant Effects of Dissipative Transport in Quantum Wires  9. Intersubband Optic Phonon Resonances in Electrostatically Confined Quantum Wires  10. Transient Simulation of Electron Emission from Quantum-Wire Structures  11. Carrier Capture in Cylindrical Quantum Wires  12. Electron-Phonon Interaction and Velocity Oscillations in Quantum Wire Structures  13. Transient and Steady-State Analysis of Electron Transport in One-Dimensional Coupled Quantum-Box Structures  14. Acoustic-Phonon Limited Mobility in Periodically Modulated Quantum Wires  15. Antiresonant Hopping Conductance and Negative Magnetoresistance in Quantum-Box Superlattices  16. Oscillatory Level Broadening in Superlattice Magnetotransport  17. Breakdown of the Linear Approximation to the Boltzmann Transport Equation in Quasi-One-Dimensional Semiconductors  18. Optic-Phonon-Limited Transport and Anomalous Carrier Cooling in Quantum-Wire Structures  19. lntersubband Stimulated Emission and Optical Gain by “Phonon Pumping” in Quantum Wires  20. Superlinear Electron Transport and Noise in Quantum Wires  21. Importance of Confined Longitudinal Optical Phonons in Intersubband and Backward Scattering in Rectangular AlGaAs/GaAs Quantum Wires  22. Confined and Interface Phonon Scattering in Finite Barrier GaAs/AlGaAs Quantum Wires  23. Hole Scattering by Confined Optical Phonons in Silicon Nanowires  Part II: Carbon Nanotubes and Nanoribbons  24. Nonlinear Transport and Heat Dissipation in Metallic Carbon Nanotubes  25. Joule Heating Induced Negative Differential Resistance in Freestanding Metallic Carbon Nanotubes  26. Restricted Wiedemann–Franz Law and Vanishing Thermoelectric Power in One-Dimensional Conductors  27. High-Field Electrothermal Transport in Metallic Carbon Nanotubes  28. Atomic Vacancy Defects in the Electronic Properties of Semi-metallic Carbon Nanotubes  29. Chirality Effects in Atomic Vacancy–Limited Transport in Metallic Carbon Nanotubes  30. Vacancy Cluster–Limited Electronic Transport in Metallic Carbon Nanotubes  31. Vacancy-Induced Intramolecular Junctions and Quantum Transport in Metallic Carbon Nanotubes  32. On the Sensing Mechanism in Carbon Nanotube Chemiresistors  33. Defect Symmetry Influence on Electronic Transport of Zigzag Nanoribbons  34. Controllable Tuning of the Electronic Transport in Pre-designed Graphene Nanoribbon  35. Quantum Conduction through Double-Bend Electron Waveguide Structures  36. Quantum Ballistic Transport through a Double-Bend Waveguide Structure: Effects of Disorder  37. Quantum Transport through One-Dimensional Double-Quantum-Well Systems  38. Cascaded Spintronic Logic with Low-Dimensional Carbon

Notă biografică

Jean-Pierre Leburton is a Gregory Stillman Professor of electrical and computer engineering and a professor of physics at the University of Illinois at Urbana-Champaign (UIUC), Illinois, USA. He is also a professor at the F. Seitz Material Research Laboratory, Micro and Nanotechnology Laboratory, and Coordinator Science Laboratory, UIUC. He earned his license in physics and PhD from the University of Liege, Belgium. He has authored or coauthored around 350 research papers in journals of international repute and nearly 50 book chapters, books, and media articles. His research interests include semiconductor devices, nonlinear transport in semiconductors, electronic and optical properties of quantum well heterostructures and superlattices, physical properties of quantum wires and quantum dots, spin effects in quantum dots, simulation of nanostructures, quantum computation and quantum information processing, and DNA electronic recognition.

Descriere

This book is a compilation of articles that span more than 30 years of research on developing comprehensive physical models that describe the physical properties of quantum wires.