Cantitate/Preț
Produs

Prescriptions for Working Statisticians: Springer Texts in Statistics

Autor Albert Madansky
en Limba Engleză Paperback – 22 ian 2012
The first course in statistics, no matter how "good" or "long" it is, typically covers inferential procedures which are valid only if a number of preconditions are satisfied by the data. For example, students are taught about regression procedures valid only if the true residuals are independent, homoscedastic, and normally distributed. But they do not learn how to check for indepen­ dence, homoscedasticity, or normality, and certainly do not learn how to adjust their data and/or model so that these assumptions are met. To help this student out! I designed a second course, containing a collec­ tion of statistical diagnostics and prescriptions necessary for the applied statistician so that he can deal with the realities of inference from data, and not merely with the kind of classroom problems where all the data satisfy the assumptions associated with the technique to be taught. At the same time I realized that I was writing a book for a wider audience, namely all those away from the classroom whose formal statistics education ended with such a course and who apply statistical techniques to data.
Citește tot Restrânge

Din seria Springer Texts in Statistics

Preț: 38298 lei

Nou

Puncte Express: 574

Preț estimativ în valută:
7332 7540$ 6082£

Carte tipărită la comandă

Livrare economică 17 februarie-03 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461283546
ISBN-10: 146128354X
Pagini: 320
Ilustrații: XIX, 295 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Springer Texts in Statistics

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

0 A Thoughtful Student’s Retrospective on Statistics 101.- 0. Introduction.- 1. The Introductory Model.- 2. The Regression Model.- References.- 1 Testing for Normality.- 0. Introduction.- 1. Normal Plots.- 2. Regression Procedures.- 3. Studentized Range.- 4. Moment Checking.- 5. Standard Tests of Goodness-of-Fit.- 6. Evaluation.- Appendix I.- References.- 2 Testing for Homoscedasticity.- 0. Introduction.- 1. Comparing Variances of Two Normal Distributions.- 2. Testing Homoscedasticity of Many Populations.- 3. Regression Residuals.- 4. Testing Homoscedasticity of Regression Residuals.- Appendix I.- References.- 3 Testing for Independence of Observations.- 0. Introduction.- 1. Parametric Procedures.- 2. Nonparametric Procedures.- References.- 4 Identification of Outliers.- 0. Introduction.- 1. Normal Distribution.- 2. Nonparametric Procedures.- 3. Outliers in Regression.- References.- 5 Transformations.- 0. Introduction.- 1. Deflating Heteroscedastic Regressions.- 2. Variance Stabilizing Transformations.- 3. Power Transformations (Box—Cox).- 4. Letter-Values and Boxplots.- 5. Power Transformations of Regression Independent Variables.- Appendix I.- References.- 6 Independent Variable Selection in Multiple Regression.- 0. Introduction.- 1. Criteria for Goodness of Regression Model.- 2. Stepwise Procedures.- 3. Multicollinearity.- References.- 7 Categorical Variables in Regression.- 0. Introduction.- 1. Two Sample Tests.- 2. Analysis of Variance via Regression (Model I).- 3. Components of Variance (Model II).- 4. Dichotomous Dependent Variables.- References.- 8 Analysis of Cross-Classified Data.- 0. Introduction.- 1. Independence in the r1 × r2 Table.- 2. Log-Linear Models in the r1 × r2 Table.- 3. The Three-Dimensional Table.- 4. Analysis of Cross-Classifications withOrdered Categories.- 5. Latent Class Model.- Appendix I.- Appendix II.- References.- Index of Reference Tables.