Cantitate/Preț
Produs

Prestressed Concrete-Lined Pressure Tunnels: Towards Improved Safety and Economical Design: IHE Delft PhD Thesis Series

Autor T.D.Y.F. Simanjuntak
en Limba Engleză Paperback – 28 iul 2015
Hydropower can be a source of sustainable energy, provided environmental considerations are taken into account and economic aspects of hydropower design are appropriately addressed. Using concrete-lined pressure tunnels instead of steel pipes may be economically attractive but may also have limitations due to the low tensile strength of concrete.
Cracking in concrete tunnel linings can lead to loss of energy production, extensive repairs, and even accidents. One of the techniques available to improve the bearing capacity of pressure tunnels is through prestressing the concrete lining by grouting the circumferential gap between the concrete lining and the rock mass at high pressure. A classical approach to determine the bearing capacity of such tunnels is based on the theory of elasticity, assuming impervious concrete. In this research, a new concept is introduced to assess the effect of seepage on the bearing capacity of pressure tunnels. Also, an innovative approach is proposed to explore the effects of the in-situ stress ratio on the lining performance. Distinction is made based on whether the rock mass behaves as an elasto-plastic isotropic, or elastic anisotropic material. Furthermore, a simplified method is introduced to quantify seepage associated with cracks around the tunnel, which is useful for assessing tunnel stability.
Citește tot Restrânge

Din seria IHE Delft PhD Thesis Series

Preț: 34916 lei

Preț vechi: 45246 lei
-23% Nou

Puncte Express: 524

Preț estimativ în valută:
6683 6887$ 5642£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781138028531
ISBN-10: 1138028533
Pagini: 148
Dimensiuni: 170 x 240 x 10 mm
Greutate: 0.25 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria IHE Delft PhD Thesis Series


Public țintă

Postgraduate

Cuprins

  1. General Introduction
  2. Literature Review
  3. The Gap Grouting Method
  4. Pressure Tunnels in Uniform In-Situ Stress Conditions
  5. Pressure Tunnels in Non-Uniform In-Situ Stress Conditions
  6. Pressure Tunnels in Transversely Isotropic Rock Formations
  7. Longitudinal Cracks in Pressure Tunnel Concrete Linings
  8. Conclusions and Recommendations

Descriere

Hydropower can be a source of sustainable energy, provided environmental considerations are taken into account and economic aspects of hydropower design are addressed. Using concrete-lined pressure tunnels instead of steel pipes may be economically attractive but may also have limitations due to the low tensile strength of concrete. This research indicates that prestressing the concrete lining by grouting the circumferential gap between the concrete lining and the rock mass at high pressure can enhance the tunnel bearing capacity and increases safety. Moreover, grouting will seal off the seepage into the rock mass, which is favourable for tunnel stability.