Principal Functions: The university series in higher mathematics
M. Nakai Autor B. Rodin, L. Sarioen Limba Engleză Paperback – 27 iul 2012
Preț: 384.68 lei
Nou
Puncte Express: 577
Preț estimativ în valută:
73.65€ • 76.70$ • 61.11£
73.65€ • 76.70$ • 61.11£
Carte tipărită la comandă
Livrare economică 13-27 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781468480405
ISBN-10: 1468480405
Pagini: 368
Ilustrații: XVIII, 348 p. 1 illus.
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1968
Editura: Springer
Colecția Springer
Seria The university series in higher mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1468480405
Pagini: 368
Ilustrații: XVIII, 348 p. 1 illus.
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1968
Editura: Springer
Colecția Springer
Seria The university series in higher mathematics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Introduction: What are Principal Functions?.- 0 Prerequisite Riemann Surface Theory.- §1. Topology of Riemann Surfaces.- §2. Analysis on Riemann Surfaces.- I The Normal Operator Method.- §1. The Main Existence Theorem.- §2. Normal Operators.- §3. The Principal Functions p0 and p1.- §4. Special Topics.- II Principal Functions.- §1. Main Extremal Theorem.- §2. Conformal Mapping.- §3. Reproducing Differentials.- §4. Interpolation Problems.- §5. The Theorems of Riemann-Roch and Abel.- §6. Extremal Length.- III Capacity Stability and Extremal Length.- §1. Generalized Capacity Functions.- §2. Extremal Length.- §3. Exponential Mappings of Plane Regions.- §4. Stability.- IV Classification Theory.- §1. Inclusion Relations.- §2. Other Properties of the O-Classes.- V Analytic Mappings.- §1. The Proximity Function.- §2. Analytic Mappings.- §3. Meromorphic Functions.- VI Principal Forms and Fields on Riemannian Spaces.- §1. Principal Functions on Riemannian Spaces.- §2. Principal Forms on Locally Flat spaces.- §3. Principal Forms on Riemannian Spaces.- VII Principal Functions on Harmonic Spaces.- §1. Harmonic Spaces.- §2. Harmonic Functions with General Singularities.- §3. General Principal Function Problem.- Appendix Sario Potentials on Riemann Surfaces.- §1. Continuity Principle.- §2. Maximum Principle.- Author Index.