Cantitate/Preț
Produs

Probabilistic Models for Nonlinear Partial Differential Equations: Lectures given at the 1st Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Montecatini Terme, Italy, May 22-30, 1995: Lecture Notes in Mathematics, cartea 1627

Autor Carl Graham Editat de Denis Talay Autor Thomas G. Kurtz Editat de Luciano Tubaro Autor Sylvie Meleard, Philip Protter, Mario Pulvirenti
en Limba Engleză Paperback – 12 iul 1996
The lecture courses of the CIME Summer School on Probabilistic Models for Nonlinear PDE's and their Numerical Applications (April 1995) had a three-fold emphasis: first, on the weak convergence of stochastic integrals; second, on the probabilistic interpretation and the particle approximation of equations coming from Physics (conservation laws, Boltzmann-like and Navier-Stokes equations); third, on the modelling of networks by interacting particle systems. This book, collecting the notes of these courses, will be useful to probabilists working on stochastic particle methods and on the approximation of SPDEs, in particular, to PhD students and young researchers.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 47881 lei

Nou

Puncte Express: 718

Preț estimativ în valută:
9163 9518$ 7612£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540613978
ISBN-10: 3540613978
Pagini: 312
Ilustrații: X, 302 p.
Dimensiuni: 216 x 279 x 16 mm
Greutate: 0.45 kg
Ediția:1996
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Mathematics, C.I.M.E. Foundation Subseries

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Weak convergence of stochastic integrals and differential equations.- Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models.- Kinetic limits for stochastic particle systems.- A statistical physics approach to large networks.- Probabilistic numerical methods for partial differential equations: Elements of analysis.- Weak convergence of stochastic integrals and differential equations II: Infinite dimensional case.