Cantitate/Preț
Produs

Proceedings of the Logic Colloquium. Held in Aachen, July 18-23, 1983: Part 1: Models and Sets: Lecture Notes in Mathematics, cartea 1103

Editat de G. H. Müller, M. M. Richter
en Limba Engleză Paperback – dec 1984

Din seria Lecture Notes in Mathematics

Preț: 42651 lei

Nou

Puncte Express: 640

Preț estimativ în valută:
8163 8413$ 6892£

Carte tipărită la comandă

Livrare economică 03-17 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540139003
ISBN-10: 3540139001
Pagini: 500
Ilustrații: VIII, 488 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.69 kg
Ediția:1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Filters and ultrafilters over definable subsets of admissible ordinals.- Superinfinitesimals and the calculus of the generalized riemann integral.- Point-picking games and HFD's.- On homomorphism types of superatomic interval Boolean algebras.- Dectdable theories of pseudo-Algebraically closed fields.- Definability in power series rings of nonzero characteristic.- Convexity properties and algebraic closure operators.- Remarks on finitely based logics.- Monadicity in topological pseudo-boolean algebras.- Finite extensions of finite groups.- Constructing choice sequences from lawless sequences of neighbourhood functions.- Partitions and homogeneous sets for admissible ordinals.- Elimination of quantifiers for the theory of Archimedean ordered divisible groups in a logic with Ramsey quantifiers.- A proof-theoretic approach to non standard analysis (continued).- Interpretations and the model theory of the classical geometries.- On cantor-bendixson spectra containing (1,1) — I.- Abstract model-theory and nets of C*-algebras: Noncommutative interpolation and preservation properties.- A contribution to nonstandard teratology.- Model- and substructure complete theories of ordered Abelian groups.- Quantifier elimination and decision procedures for valued fields.- On ? 3 1 .