Python for Data Science For Dummies, 3rd Edition
Autor JP Muelleren Limba Engleză Paperback – 5 noi 2023
Preț: 132.41 lei
Preț vechi: 165.51 lei
-20% Nou
Puncte Express: 199
Preț estimativ în valută:
25.34€ • 26.73$ • 21.12£
25.34€ • 26.73$ • 21.12£
Carte disponibilă
Livrare economică 12-26 decembrie
Livrare express 27 noiembrie-03 decembrie pentru 42.48 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781394213146
ISBN-10: 139421314X
Pagini: 464
Dimensiuni: 187 x 235 x 25 mm
Greutate: 0.87 kg
Ediția:3rd Edition
Editura: Wiley
Locul publicării:Hoboken, United States
ISBN-10: 139421314X
Pagini: 464
Dimensiuni: 187 x 235 x 25 mm
Greutate: 0.87 kg
Ediția:3rd Edition
Editura: Wiley
Locul publicării:Hoboken, United States
Descriere scurtă
Notă biografică
John Paul Mueller is a freelance author and technical editor who has written 124 books on topics ranging like networking, home security, database management, and heads-down programming. Luca Massaron is a data scientist specialized in solving real-world problems with AI, machine learning, and algorithms. He is also a Kaggle Grandmaster and a Google Developer Expert.
Cuprins
Introduction 1 Part 1: Getting Started with Data Science and Python 7 Chapter 1: Discovering the Match between Data Science and Python 9 Chapter 2: Introducing Python's Capabilities and Wonders 21 Chapter 3: Setting Up Python for Data Science 33 Chapter 4: Working with Google Colab 49 Part 2: Getting Your Hands Dirty with Data 71 Chapter 5: Working with Jupyter Notebook 73 Chapter 6: Working with Real Data 83 Chapter 7: Processing Your Data 105 Chapter 8: Reshaping Data 131 Chapter 9: Putting What You Know into Action 143 Part 3: Visualizing Information 157 Chapter 10: Getting a Crash Course in Matplotlib 159 Chapter 11: Visualizing the Data 177 Part 4: Wrangling Data 199 Chapter 12: Stretching Python's Capabilities 201 Chapter 13: Exploring Data Analysis 223 Chapter 14: Reducing Dimensionality 251 Chapter 15: Clustering 273 Chapter 16: Detecting Outliers in Data 291 Part 5: Learning from Data 305 Chapter 17: Exploring Four Simple and Effective Algorithms 307 Chapter 18: Performing Cross-Validation, Selection, and Optimization 327 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks 351 Chapter 20: Understanding the Power of the Many 391 Part 6: The Part of Tens 413 Chapter 21: Ten Essential Data Resources 415 Chapter 22: Ten Data Challenges You Should Take 421 Index 431