Cantitate/Preț
Produs

q-Fractional Calculus and Equations: Lecture Notes in Mathematics, cartea 2056

Autor Mahmoud H. Annaby, Zeinab S. Mansour
en Limba Engleză Paperback – 26 aug 2012
This nine-chapter monograph introduces a rigorous investigation of q-difference operators in standard and fractional settings. It starts with elementary calculus of q-differences and integration of Jackson’s type before turning to q-difference equations. The existence and uniqueness theorems are derived using successive approximations, leading to systems of equations with retarded arguments. Regular  q-Sturm–Liouville theory is also introduced; Green’s function is constructed and the eigenfunction expansion theorem is given. The monograph also discusses some integral equations of Volterra and Abel type, as introductory material for the study of fractional q-calculi. Hence fractional q-calculi of the types Riemann–Liouville; Grünwald–Letnikov;  Caputo;  Erdélyi–Kober and Weyl are defined analytically. Fractional q-Leibniz rules with applications  in q-series are  also obtained with rigorous proofs of the formal  results of  Al-Salam-Verma, which remained unproved for decades. In working towards the investigation of q-fractional difference equations; families of q-Mittag-Leffler functions are defined and their properties are investigated, especially the q-Mellin–Barnes integral  and Hankel contour integral representation of  the q-Mittag-Leffler functions under consideration,  the distribution, asymptotic and reality of their zeros, establishing q-counterparts of Wiman’s results. Fractional q-difference equations are studied; existence and uniqueness theorems are given and classes of Cauchy-type problems are completely solved in terms of families of q-Mittag-Leffler functions. Among many q-analogs of classical results and concepts, q-Laplace, q-Mellin and q2-Fourier transforms are studied and their applications are investigated.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 37405 lei

Nou

Puncte Express: 561

Preț estimativ în valută:
7164 7381$ 6001£

Carte tipărită la comandă

Livrare economică 21-27 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642308970
ISBN-10: 364230897X
Pagini: 332
Ilustrații: XIX, 318 p. 6 illus.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.48 kg
Ediția:2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 Preliminaries.- 2 q-Difference Equations.- 3 q-Sturm Liouville Problems.- 4 Riemann–Liouville q-Fractional Calculi.- 5 Other q-Fractional Calculi.- 6 Fractional q-Leibniz Rule and Applications.- 7 q-Mittag–Leffler Functions.- 8 Fractional q-Difference Equations.- 9 Applications of q-Integral Transforms.

Recenzii

From the reviews:
“This monograph briefly introduces q-calculus … . The book is carefully and well written. Each chapter is introduced by an informative abstract. The bibliography is extensive and useful, and useful tables of formulas appear in appendices. This monograph is of interest to people who want to learn to do research in q-fractional calculus as well as to people currently doing research in q-fractional calculus.” (P. W. Eloe, Mathematical Reviews, April, 2013)

Textul de pe ultima copertă

This nine-chapter monograph introduces a rigorous investigation of q-difference operators in standard and fractional settings. It starts with elementary calculus of q-differences and integration of Jackson’s type before turning to q-difference equations. The existence and uniqueness theorems are derived using successive approximations, leading to systems of equations with retarded arguments. Regular  q-Sturm–Liouville theory is also introduced; Green’s function is constructed and the eigenfunction expansion theorem is given. The monograph also discusses some integral equations of Volterra and Abel type, as introductory material for the study of fractional q-calculi. Hence fractional q-calculi of the types Riemann–Liouville; Grünwald–Letnikov;  Caputo;  Erdélyi–Kober and Weyl are defined analytically. Fractional q-Leibniz rules with applications  in q-series are  also obtained with rigorous proofs of the formal  results of  Al-Salam-Verma, which remained unproved for decades. In working towards the investigation of q-fractional difference equations; families of q-Mittag-Leffler functions are defined and their properties are investigated, especially the q-Mellin–Barnes integral  and Hankel contour integral representation of  the q-Mittag-Leffler functions under consideration,  the distribution, asymptotic and reality of their zeros, establishing q-counterparts of Wiman’s results. Fractional q-difference equations are studied; existence and uniqueness theorems are given and classes of Cauchy-type problems are completely solved in terms of families of q-Mittag-Leffler functions. Among many q-analogs of classical results and concepts, q-Laplace, q-Mellin and q2-Fourier transforms are studied and their applications are investigated.

Caracteristici

First detailed rigorous study of q-calculi First detailed rigorous study of q-difference equations First detailed rigorous study of q-fractional calculi and equations Proofs of many classical unproved results are given Illustrative examples and figures helps readers to digest the new approaches Includes supplementary material: sn.pub/extras Includes supplementary material: sn.pub/extras