Cantitate/Preț
Produs

Quantenmechanik II: Vom Drehimpuls bis zur nichtrelativistischen Quantenfeldtheorie

Autor Oliver Tennert
de Limba Germană Paperback – 23 mai 2024
In einer umfassenden Darstellung entwickeln und vertiefen die vier Bände dieses Lehrbuchs das Gebäude der nichtrelativistischen Quantenmechanik, weshalb sie auch bestens als Nachschlagewerk geeignet sind.
Der zweite Band behandelt den quantenmechanischen Drehimpuls, sowie Symmetrien in der nichtrelativistischen Quantenmechanik. Anschließend wird das wichtige Anwendungsgebiet der dreidimensionalen Probleme sowohl auf algebraischem Wege als auch mit analytischen Methoden untersucht. Es schließen sich Kapitel zu Teilchen in elektromagnetischen Feldern und zum großen Themenkomplex identischer Teilchen an, welcher nahtlos zur Feldquantisierung weiterführt.
Besonderheiten:
Auch komplizierte Zusammenhänge werden illustrativ und klar erklärt. Zahlreiche mathematische Einschübe erläutern allgemeine mathematische Zusammenhänge. Besondere Highlights des Buches sind der algebraische Beweis zur Ganzzahligkeit des Bahndrehimpulses, die ausführliche Untersuchung des Zusammenhangs zwischen Clifford-Algebren und Spinoren, sowie ein Linearisierungsansatz für die Schrödinger-Gleichung. Die Mathematik der Eichtheorien bietet eine zusammenhängende Formulierung sehr vieler topologischer Phänomene wie magnetischer Monopole, des Aharonov–Bohm-Effekts oder von Landau-Niveaus.
Inhalt
1. Theorie des Drehimpulses I - 2. Symmetrien in der Quantenmechanik I - 3. Dreidimensionale Probleme - 4. Teilchen in elektromagnetischen Feldern - 5. Theorie des Drehimpulses II - 6. Identische Teilchen und nichtrelativistische Quantenfeldtheorie
Zielgruppe:
Das Buch richtet sich sowohl an Bachelor- als auch an Masterstudierende sowie ihre Lehrenden. Aufgrund seines mehrbändigen Charakters, der breiten Themenvielfalt und Bezügen zu wissenschaftlichen Originalarbeiten allerdings ein Muss für jedes Bücherregal einer in der Physik tätigen Person.
Vorkenntnisse:
Vorausgesetzt werden Kenntnisse der Theoretischen Mechanik, der Elektrodynamik und der Speziellen Relativitätstheorie, sowie der Analysis, der linearen Algebra und der Funktionentheorie.
Citește tot Restrânge

Preț: 23610 lei

Nou

Puncte Express: 354

Preț estimativ în valută:
4519 4657$ 3815£

Carte tipărită la comandă

Livrare economică 27 februarie-05 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662685860
ISBN-10: 3662685868
Pagini: 453
Ilustrații: XIX, 453 S. 8 Abb., 4 Abb. in Farbe.
Dimensiuni: 168 x 240 mm
Greutate: 0.79 kg
Ediția:2024
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany

Cuprins

1. Theorie des Drehimpulses I.- 2. Symmetrien in der Quantenmechanik I.- 3. Dreidimensionale Probleme.- 4. Teilchen in elektromagnetischen Feldern.- 5. Theorie des Drehimpulses II.- 6. Identische Teilchen und nichtrelativistische Quantenfeldtheorie.

Notă biografică

Oliver Tennert studierte Physik an der Eberhard Karls Universität Tübingen. Anschließend war er wissenschaftlicher Angestellter am Institut für Theoretische Physik und arbeitete auf dem Gebiet der Yang–Mills-Theorien und der Quantenchromodynamik. In seiner Doktorarbeit beschäftigte er sich mit Vortex-Kondensation und Quark-Confinement in Gitter-Yang–Mills-Theorien in Zentrumsprojektion. Sein weiterer beruflicher Werdegang führte ihn in das Gebiet des Höchstleistungsrechnens (High Performance Computing) und dessen zahlreiche wissenschaftlichen und industriellen Anwendungen. Seine Leidenschaft gilt jedoch nach wie vor der Theoretischen Physik und ihrer mathematischen Methoden. 

Textul de pe ultima copertă

In einer umfassenden Darstellung entwickeln und vertiefen die vier Bände dieses Lehrbuchs das Gebäude der nichtrelativistischen Quantenmechanik, weshalb sie auch bestens als Nachschlagewerk geeignet sind.
Der zweite Band behandelt den quantenmechanischen Drehimpuls, sowie Symmetrien in der nichtrelativistischen Quantenmechanik. Anschließend wird das wichtige Anwendungsgebiet der dreidimensionalen Probleme sowohl auf algebraischem Wege als auch mit analytischen Methoden untersucht. Es schließen sich Kapitel zu Teilchen in elektromagnetischen Feldern und zum großen Themenkomplex identischer Teilchen an, welcher nahtlos zur Feldquantisierung weiterführt.
Besonderheiten:
Auch komplizierte Zusammenhänge werden illustrativ und klar erklärt. Zahlreiche mathematische Einschübe erläutern allgemeine mathematische Zusammenhänge. Besondere Highlights des Buches sind der algebraische Beweis zur Ganzzahligkeit des Bahndrehimpulses, die ausführliche Untersuchung desZusammenhangs zwischen Clifford-Algebren und Spinoren, sowie ein Linearisierungsansatz für die Schrödinger-Gleichung. Die Mathematik der Eichtheorien bietet eine zusammenhängende Formulierung sehr vieler topologischer Phänomene wie magnetischer Monopole, des Aharonov–Bohm-Effekts oder von Landau-Niveaus.
Inhalt
1. Theorie des Drehimpulses I - 2. Symmetrien in der Quantenmechanik I - 3. Dreidimensionale Probleme - 4. Teilchen in elektromagnetischen Feldern - 5. Theorie des Drehimpulses II - 6. Identische Teilchen und nichtrelativistische Quantenfeldtheorie
Zielgruppe:
Das Buch richtet sich sowohl an Bachelor- als auch an Masterstudierende sowie ihre Lehrenden. Aufgrund seines mehrbändigen Charakters, der breiten Themenvielfallt und Bezügen zu wissenschaftlichen Originalarbeiten allerdings ein Muss für jedes Bücherregal einer in der Physik tätigen Person.
Vorkenntnisse:
Vorausgesetzt werden Kenntnisse der TheoretischenMechanik, der Elektrodynamik und der Speziellen Relativitätstheorie, sowie der Analysis, der linearen Algebra und der Funktionentheorie.
Der Autor:
Oliver Tennert studierte Physik an der Eberhard Karls Universität Tübingen. Anschließend war er wissenschaftlicher Angestellter am Institut für Theoretische Physik und arbeitete auf dem Gebiet der Yang–Mills-Theorien und der Quantenchromodynamik. In seiner Doktorarbeit beschäftigte er sich mit Vortex-Kondensation und Quark-Confinement in Gitter-Yang–Mills-Theorien in Zentrumsprojektion.
 
 

Caracteristici

Ausführliche Herleitung mit großem mathematischen Bezug Für Bachelor und Masterstudierende geeignet Weiterführende Einblicke in die Quantenmechanik geeignet für Spezialvorlesungen und Seminare im Master