Quantum Optics: Springer Study Edition
Autor D.F. Walls, G. J. Milburnen Limba Engleză Paperback – 9 mar 1995
Din seria Springer Study Edition
- Preț: 386.24 lei
- Preț: 370.79 lei
- Preț: 296.06 lei
- Preț: 403.37 lei
- Preț: 508.91 lei
- 23% Preț: 871.55 lei
- Preț: 403.37 lei
- Preț: 389.70 lei
- 15% Preț: 502.73 lei
- Preț: 389.70 lei
- 5% Preț: 1122.94 lei
- 5% Preț: 370.38 lei
- Preț: 406.25 lei
- 15% Preț: 530.58 lei
- Preț: 398.35 lei
- 5% Preț: 368.73 lei
- 15% Preț: 633.02 lei
- Preț: 392.75 lei
- 15% Preț: 588.69 lei
- 20% Preț: 660.99 lei
- 20% Preț: 663.61 lei
- 15% Preț: 640.88 lei
- 15% Preț: 654.43 lei
- Preț: 390.46 lei
- 15% Preț: 652.81 lei
- Preț: 394.87 lei
- 15% Preț: 642.03 lei
- 15% Preț: 688.99 lei
- 15% Preț: 642.36 lei
- 15% Preț: 635.15 lei
- Preț: 396.62 lei
- Preț: 419.14 lei
- Preț: 423.34 lei
- 20% Preț: 377.27 lei
- 18% Preț: 742.97 lei
- 15% Preț: 655.27 lei
- 20% Preț: 336.02 lei
- Preț: 397.38 lei
Preț: 893.21 lei
Preț vechi: 1089.29 lei
-18% Nou
Puncte Express: 1340
Preț estimativ în valută:
170.94€ • 176.95$ • 144.48£
170.94€ • 176.95$ • 144.48£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540588313
ISBN-10: 3540588310
Pagini: 364
Ilustrații: XII, 351 p. 14 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Study Edition
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540588310
Pagini: 364
Ilustrații: XII, 351 p. 14 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Study Edition
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
Professional/practitionerCuprins
1. Introduction.- 2. Quantisation of the Electromagnetic Field.- 2.1 Field Quantisation.- 2.2 Fock or Number States.- 2.3 Coherent States.- 2.4 Squeezed States.- 2.5 Two-Photon Coherent States.- 2.6 Variance in the Electric Field.- 2.7 Multimode Squeezed States.- 2.8 Phase Properties of the Field.- Exercises.- 3. Coherence Properties of the Electromagnetic Field.- 3.1 Field-Correlation Functions.- 3.2 Properties of the Correlation Functions.- 3.3 Correlation Functions and Optical Coherence.- 3.4 First-Order Optical Coherence.- 3.5 Coherent Field.- 3.6 Photon Correlation Measurements.- 3.7 Quantum Mechanical Fields.- 3.8 Phase-Dependent Correlation Functions.- 3.9 Photon Counting Measurements.- 3.10 Quantum Mechanical Photon Count Distribution.- Exercises.- 4. Representations of the Electromagnetic Field.- 4.1 Expansion in Number States.- 4.2 Expansion in Coherent States.- Exercises.- 5. Quantum Phenomena in Simple Systems in Nonlinear Optics.- 5.1 Single-Mode Quantum Statistics.- 5.2 Two-Mode Quantum Correlations.- 5.3 Quantum Limits to Amplification.- 5.4 Amplitude Squeezed State with Poisson Photon Number Statistics.- Problems.- 6. Stochastic Methods.- 6.1 Master Equation.- 6.2 Equivalent c-Number Equations.- 6.3 Stochastic Differential Equations.- 6.4 Linear Processes with Constant Diffusion.- 6.5 Two Time Correlation Functions in Quantum Markov Processes.- 6.6 Application to Systems with a P Representation.- Exercises.- 7. Input-Output Formulation of Optical Cavities.- 7.1 Cavity Modes.- 7.2 Linear Systems.- 7.3 Two-Sided Cavity.- 7.4 Two Time Correlation Functions.- 7.5 Spectrum of Squeezing.- 7.6 Parametric Oscillator.- 7.7 Squeezing in the Total Field.- 7.8 Fokker-Planck Equation.- Exercises.- 8. Generation and Applications of Squeezed Light.- 8.1 Parametric Oscillation and Second Harmonic Generation.- 8.2 Twin Beam Generation and Intensity Correlations.- 8.3 Applications of Squeezed Light.- Exercises.- 9. Nonlinear Quantum Dissipative Systems.- 9.1 Optical Parametric Oscillator: Complex P Function.- 9.2 Optical Parametric Oscillator: Positive P Function.- 9.3 Quantum Tunnelling Time.- 9.4 Dispersive Optical Bistability.- 9.5 Comment on the Use of the Q and Wigner Representations.- Exercises.- 9.A Appendix.- 10. Interaction of Radiation with Atoms.- 10.1 Quantization of the Electron Wave Field.- 10.2 Interaction Between the Radiation Field and the Electron Wave Field.- 10.3 Interaction of a Two-Level Atom with a Single Mode Field.- 10.4 Quantum Collapses and Revivals.- 10.5 Spontaneous Decay of a Two-Level Atom.- 10.6 Decay of a Two-Level Atom in a Squeezed Vacuum.- 10.7 Phase Decay in a Two-Level System.- Exercises.- 11. Resonance Fluorescence.- 11.1 Master Equation.- 11.2 Spectrum of the Fluorescent Light.- 11.3 Photon Correlations.- 11.4 Squeezing Spectrum.- Exercises.- 12. Quantum Theory of the Laser.- 12.1 Master Equation.- 12.2 Photon Statistics.- 12.3 Laser Linewidth.- 12.4 Regularly Pumped Laser.- 12. A Appendix: Derivation of the Single-Atom Increment.- Exercises.- 13. Intracavity Atomic Systems.- 13.1 Optical Bistability.- 13.2 Nondegenerate Four Wave Mixing.- 13.3 Experimental Results.- Exercises.- 14. Bells Inequalities in Quantum Optics.- 14.1 The Einstein-Podolsky-Rosen (EPR) Argument.- 14.2 Bell Inequalities and the Aspect Experiment.- 14.3 Violations of Bell’s Inequalities Using a Parametric Amplifier Source.- 14.4 One-Photon Interference.- Exercises.- 15. Quantum Nondemolition Measurements.- 15.1 Concept of a QND measurement.- 15.2 Back Action Evasion.- 15.3 Criteria for a QND Measurement.- 15.4 The BeamSplitter.- 15.5 Ideal Quadrature QND Measurements.- 15.6 Experimental Realisation.- 15.7 A Photon Number QND Scheme.- Exercises.- 16. Quantum Coherence and Measurement Theory.- 16.1 Quantum Coherence.- 16.2 The Effect of Fluctuations.- 16.3 Quantum Measurement Theory.- 16.4 Examples of Pointer Observables.- 16.5 Model of a Measurement.- Exercises.- 17. Atomic Optics.- 17.1 Young’s Interference with Path Detectors.- 17.2 Atomic Diffraction by a Standing Light Wave.- 17.3 Optical Stern-Gerlach Effect.- 17.4 Quantum Non-Demolition Measurement of the Photon Number by Atomic Beam Deflection.- 17.5 Measurement of Atomic Position.- Exercises.- 17.A Appendix.- References.