Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems: Mitteilungen aus dem Institut für Angewandte Mathematik, cartea 8
Autor ENGELI, Ginsburg, STIEFEL, RUTISHAUSERen Limba Engleză Paperback – 27 dec 2012
Preț: 369.40 lei
Nou
Puncte Express: 554
Preț estimativ în valută:
70.71€ • 74.14$ • 58.42£
70.71€ • 74.14$ • 58.42£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034872263
ISBN-10: 3034872267
Pagini: 108
Ilustrații: 107 p. 7 illus.
Greutate: 0.15 kg
Ediția:Softcover reprint of the original 1st ed. 1959
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Mitteilungen aus dem Institut für Angewandte Mathematik
Locul publicării:Basel, Switzerland
ISBN-10: 3034872267
Pagini: 108
Ilustrații: 107 p. 7 illus.
Greutate: 0.15 kg
Ediția:Softcover reprint of the original 1st ed. 1959
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Mitteilungen aus dem Institut für Angewandte Mathematik
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
I: The Self-Adjoint Boundary Value Problem.- 1. Problems of Dirichlet’s and Poisson’s type.- 2. Better approximations.- 3. Energy on the boundary.- 4. Eigenvalue problems.- 5. Biharmonic problems.- 6. Adaption for practical purposes; the test example.- 7. Modes of oscillation of the plate.- II: Theory of Gradient Methods.- 1. Introduction.- 2. The residual polynomial.- 3. Methods with two-term recursive formulae.- 4. Methods with three-term recursive formulae.- 5. Combined methods.- 6. The cgT-method.- 7. Determination of eigenvalues.- III: Experiments on Gradient Methods.- 1. Introduction.- 2. Survey of the plate experiments.- 3. Solution of the system A x + b = 0 (Plate problem with coarse grid).- 4. Determination of the eigenvalues of A.- 5. Solution of the system A x + b =0 and determination of the eigenvalues of A; fine grid.- 6. Second test example: the bar problem.- 7. Appendix: The first three eigenvectors of A.- IV: Overrelaxation.- 1. Theory.- 2. Numerical results (Plate problem).- 3. The bar problem.- V: Conclusions.- 1. The plate problem.- 2. The bar problem.- 3. Computation of eigenvalues.- 4. Recollection of the facts.- References.