Reinforcement Learning: Aktuelle Ansätze verstehen – mit Beispielen in Java und Greenfoot
Autor Uwe Lorenzde Limba Germană Paperback – 5 apr 2024
Preț: 177.02 lei
Preț vechi: 221.28 lei
-20% Nou
Puncte Express: 266
Preț estimativ în valută:
33.88€ • 35.74$ • 28.23£
33.88€ • 35.74$ • 28.23£
Carte disponibilă
Livrare economică 09-14 decembrie
Livrare express 27 noiembrie-03 decembrie pentru 24.85 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662683101
ISBN-10: 3662683105
Ilustrații: XVI, 204 S. 76 Abb., 63 Abb. in Farbe.
Dimensiuni: 168 x 240 mm
Greutate: 0.38 kg
Ediția:2. Aufl. 2024
Editura: Springer Berlin, Heidelberg
Colecția Springer Vieweg
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3662683105
Ilustrații: XVI, 204 S. 76 Abb., 63 Abb. in Farbe.
Dimensiuni: 168 x 240 mm
Greutate: 0.38 kg
Ediția:2. Aufl. 2024
Editura: Springer Berlin, Heidelberg
Colecția Springer Vieweg
Locul publicării:Berlin, Heidelberg, Germany
Cuprins
Bestärkendes Lernen als Teilgebiet des Maschinellen Lernens.- Grundbegriffe des Bestärkenden Lernens.- Optimale Entscheidungen in einem bekannten Umweltsystem.- Entscheiden und Lernen in einem unbekannten Umweltsystem.- Neuronale Netze als Schätzer für Zustandsbewertungen und Aktionspräferenzen.- Werden digitale Agenten bald intelligenter als Menschen sein?.- Leitbilder in der KI.
Notă biografică
Uwe Lorenz war nach seinem Studium der Informatik und Philosophie mit Schwerpunkt Künstliche Intelligenz und Maschinelles Lernen an der Humboldt-Universität in Berlin und einigen Jahren als Projektingenieur für 10 Jahr als Gymnasiallehrer für Informatik und Mathematik tätig. Seit seinem Erstkontakt mit Computern Ende der 80er Jahre hat ihn das Thema Künstliche Intelligenz nicht mehr losgelassen. Derzeit arbeitet er als wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Didaktik der Informatik an der Freien Universität Berlin in einem Projekt zur Thematik "Verantwortungsvolle Künstliche Intelligenz in der Lehramtsausbildung".
Textul de pe ultima copertă
In uralten Spielen wie Schach oder Go können sich die brillantesten Spieler verbessern, indem sie die von einer Maschine produzierten Strategien studieren. Robotische Systeme üben ihre Bewegungen selbst. In Arcade Games erreichen lernfähige Agenten innerhalb weniger Stunden übermenschliches Niveau. Wie funktionieren diese spektakulären Algorithmen des Bestärkenden Lernens? Mit gut verständlichen Erklärungen und übersichtlichen Beispielen in Java und Greenfoot können Sie sich die Prinzipien des Bestärkenden Lernens aneignen und in eigenen intelligenten Agenten anwenden. Greenfoot (M. Kölling, King’s College London) und das Hamster-Modell (D. Bohles, Universität Oldenburg) sind einfache, aber auch mächtige didaktische Werkzeuge, die entwickelt wurden, um Grundkonzepte der Programmierung zu vermitteln. Wir werden Figuren wie den Java-Hamster zu lernfähigen Agenten machen, die eigenständig ihre Umgebung erkunden.
Die zweite Auflage enthält neue Themen wie „Genetische Algorithmen“ und „Künstliche Neugier“ sowie Erklärungen zu aktuellen Algorithmen wie A3C und PPO (wurde u.a. für das Finetuning von ChatGPT verwendet) außerdem Korrekturen und Überarbeitungen.
Der Inhalt
- Bestärkendes Lernen als Teilgebiet des Maschinellen Lernens
- Grundbegriffe des Bestärkenden Lernens
- Optimale Entscheidungen in einem bekannten Umweltsystem
- Entscheiden und Lernen in einem unbekannten Umweltsystem
- Neuronale Netze als Schätzer für Zustandsbewertungen und Aktionspreferenzen
- Werden digitale Agenten bald intelligenter als Menschen sein?
- Leitbilder in der KI
- Fortbildung für Lehrkräfte, Dozenten, die Einblicke in die Programmierung von lernfähigen Agenten bekommen möchten
- Techniker, Informatiker, die ML-Algorithmen besser verstehen wollen
- Programmierer, die Lernalgorithmen selbst implementieren wollen
- Schüler und Studierende, die sich mit Maschinellem Lernen und intelligenten Agenten beschäftigen
Uwe Lorenz war nach seinem Studium der Informatik und Philosophie mit Schwerpunkt Künstliche Intelligenz und Maschinelles Lernen an der Humboldt-Universität in Berlin und einigen Jahren als Projektingenieur für 10 Jahr als Gymnasiallehrer für Informatik und Mathematik tätig. Seit seinem Erstkontakt mit Computern Ende der 80er Jahre hat ihn das Thema Künstliche Intelligenz nicht mehr losgelassen. Derzeit arbeitet er als wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Didaktik der Informatik an der Freien Universität Berlin in einem Projekt zur Thematik "Verantwortungsvolle Künstliche Intelligenz in der Lehramtsausbildung".
Caracteristici
Führt in die wichtigsten Lernalgorithmen allgemein verständlich ein Bereitet das Thema auch für interessierte Kreise außerhalb des akademischen Betriebs auf Beinhaltet Beispielübungen in Java und Greenfoot