Relativistic Physics in Arbitrary Reference Frames
Autor Nikolai Mitskievichen Limba Engleză Hardback – 17 iul 2005
Preț: 911.46 lei
Preț vechi: 1247.48 lei
-27% Nou
Puncte Express: 1367
Preț estimativ în valută:
174.44€ • 181.63$ • 147.42£
174.44€ • 181.63$ • 147.42£
Carte disponibilă
Livrare economică 17 februarie-03 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781594544255
ISBN-10: 1594544255
Pagini: 166
Ilustrații: illustrations
Dimensiuni: 184 x 267 x 19 mm
Greutate: 0.53 kg
Ediția:New.
Editura: Nova Science Publishers Inc
ISBN-10: 1594544255
Pagini: 166
Ilustrații: illustrations
Dimensiuni: 184 x 267 x 19 mm
Greutate: 0.53 kg
Ediția:New.
Editura: Nova Science Publishers Inc
Cuprins
Preface; Introduction; A general characterisation of the subject; A synopsis of notations of Riemannian geometry; The Noether theorem: space-time invariance; The Noether densities transformation laws; Reference frames calculus; The monad formalism and its place in the description of reference frames in relativistic physics; Reference frames algebra; Geometry of congruences. Acceleration, rotation, expansion and shear of a reference frame; Differential operations and identities of the monad formalism; Equations of motion of test particles; The electric field strength and magnetic displacement vectors; Monad description of the motion of a test charged mass in gravitational and electromagnetic fields; Motion of photons, the redshift and Doppler effects; The dragging phenomenon; Dragging in circular equatorial orbits in the Kerr space-time; An orbit shift in the TaubNUT space-time; Dragging in the space-time of a pencil of light; Other dragging effects; More general gravitoelectromagnetic and gravitoelectric phenomena; The Maxwell field equations; The four-dimensional Maxwell equations; The electromagnetic stress-energy tensor and its monad decomposition; Monad representation of Maxwells equations; A charged fluid without electric field; An Einstein-Maxwell field with kinematic magnetic charges; The Einstein field equations; The four-dimensional Einstein equations; Monad representation of Einsteins equations; The geodesic deviation equation and a new level of analogy between gravitation and electromagnetism; New quasi-Maxwellian equations of the gravitational field; Remarks on classification of intrinsic gravitational fields; Example of the Taub-NUT field; Example of the spinning pencil-of-light field; Gravitational fields of the G¨odel universe; Perfect fluids; Introductive remarks; Rank 2 and 3 fields; Free rank 2 field; Free rank 3 field; Rotating fluids; Special relativistic theory; Additional remarks; Mechanics versus field theory; Canonical approach to field theory; Canonical formalism and quantisation; Concluding remarks; References; Index.