Riemannian Geometric Statistics in Medical Image Analysis
Editat de Xavier Pennec, Stefan Sommer, Tom Fletcheren Limba Engleză Paperback – 3 sep 2019
Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods.
Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology
Content includes:
- The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs
- Applications of statistics on manifolds and shape spaces in medical image computing
- Diffeomorphic deformations and their applications
- A complete reference covering both the foundations and state-of-the-art methods
- Edited and authored by leading researchers in the field
- Contains theory, examples, applications, and algorithms
- Gives an overview of current research challenges and future applications
Preț: 535.01 lei
Preț vechi: 842.22 lei
-36% Nou
Puncte Express: 803
Preț estimativ în valută:
102.46€ • 105.57$ • 85.83£
102.46€ • 105.57$ • 85.83£
Carte tipărită la comandă
Livrare economică 15 februarie-01 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128147252
ISBN-10: 0128147253
Pagini: 636
Dimensiuni: 191 x 235 mm
Greutate: 1.08 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0128147253
Pagini: 636
Dimensiuni: 191 x 235 mm
Greutate: 1.08 kg
Editura: ELSEVIER SCIENCE
Public țintă
Researchers and graduate students in medical imaging, computer vision, and signal processing engineersCuprins
Part 1 Foundations of geometric statistics 1. Introduction to differential and Riemannian geometry 2. Statistics on manifolds 3. Manifold-valued image processing with SPD matrices 4. Riemannian geometry on shapes and diffeomorphisms 5. Beyond Riemannian geometry
Part 2 Statistics on manifolds and shape spaces 6. Object shape representation via skeletal models (s-reps) and statistical analysis 7. Efficient recursive estimation of the Riemannian barycenter on the hypersphere and the special orthogonal group with applications 8. Statistics on stratified spaces 9. Bias on estimation in quotient space and correction methods 10. Probabilistic approaches to geometric statistics 11. On shape analysis of functional data
Part 3 Deformations, diffeomorphisms and their applications 12. Fidelity metrics between curves and surfaces: currents, varifolds, and normal cycles 13. A discretize–optimize approach for LDDMM registration 14. Spatially adaptive metrics for diffeomorphic image matching in LDDMM 15. Low-dimensional shape analysis in the space of diffeomorphisms 16. Diffeomorphic density registration
Part 2 Statistics on manifolds and shape spaces 6. Object shape representation via skeletal models (s-reps) and statistical analysis 7. Efficient recursive estimation of the Riemannian barycenter on the hypersphere and the special orthogonal group with applications 8. Statistics on stratified spaces 9. Bias on estimation in quotient space and correction methods 10. Probabilistic approaches to geometric statistics 11. On shape analysis of functional data
Part 3 Deformations, diffeomorphisms and their applications 12. Fidelity metrics between curves and surfaces: currents, varifolds, and normal cycles 13. A discretize–optimize approach for LDDMM registration 14. Spatially adaptive metrics for diffeomorphic image matching in LDDMM 15. Low-dimensional shape analysis in the space of diffeomorphisms 16. Diffeomorphic density registration