Cantitate/Preț
Produs

Riemannsche Flächen: Springer-Lehrbuch

Autor Klaus Lamotke
de Limba Germană Paperback – 26 iun 2009
Die Theorie Riemannscher Flächen wird als ein Mikrokosmos der Reinen Mathematik dargestellt, in dem Methoden der Topologie und Geometrie, der komplexen und reellen Analysis sowie der Algebra zusammenwirken, um die reichhaltige Struktur dieser Flächen aufzuklären. Viele Beispiele und Bilder, die in der historischen Entwicklung eine Rolle spielten, ergänzen die Darstellung. Das Buch beruht auf Vorlesungen und Seminaren im Anschluß an eine Einführung in die komplexe Funktionentheorie. Wegen seiner Methodenvielfalt enthält es gleichzeitig Einführungen in die Topologie (Fundamentalgruppe, Überlagerungen, Flächen), in die algebraische Geometrie (Kurven und ihre Singularitäten) und in die Potentialtheorie (harmonische Funktionen).
Die 2. Auflage wurde um eine genauere Betrachtung des Kleinschen 14-Ecks, ein Kapitel über die de Rhamsche Cohomologie und einen Paragraphen über die Lösung nicht-linearer Gleichungen der Mathematischen Physik mittels Riemannscher Thetafunktionen ergänzt.
Citește tot Restrânge

Din seria Springer-Lehrbuch

Preț: 31868 lei

Nou

Puncte Express: 478

Preț estimativ în valută:
6101 6342$ 5058£

Carte tipărită la comandă

Livrare economică 06-20 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642017100
ISBN-10: 364201710X
Pagini: 354
Ilustrații: X, 341 S. 49 Abb.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.5 kg
Ediția:2., erg. u. verb. Aufl. 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer-Lehrbuch

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Upper undergraduate

Cuprins

Grundlagen.- Tori und elliptische Funktionen.- Fundamentalgruppen und #x00DC;berlagerungen.- Verzweigte #x00DC;berlagerungen.- Die - und #x03BB;-Funktion.- Algebraische Funktionen.- Differentialformen und Integration.- Divisoren und Abbildungen in projektive R#x00E4;ume.- Ebene Kurven.- Harmonische Funktionen.- Uniformisierung. Dreiecksgruppen.- Polyederfl#x00E4;chen.- Der Satz von Riemann-Roch.- Der Periodentorus.- Die deRhamsche Cohomologie.- Die Riemannsche Thetafunktion.

Textul de pe ultima copertă

Das vorliegende Buch beruht auf Vorlesungen und Seminaren für Studenten mittlerer und höherer Semester im Anschluß an eine Einführung in die komplexe Funktionentheorie. Die Theorie Riemannscher Flächen wird als ein Mikrokosmos der Reinen Mathematik dargestellt, in dem Methoden der Topologie und Geometrie, der komplexen und reellen Analysis sowie der Algebra zusammenwirken, um die reichhaltige Struktur dieser Flächen aufzuklären und an vielen Beispielen und Bildern zu erläutern, die in der historischen Entwicklung eine Rolle spielten. Wegen seiner Methodenvielfalt enthält es gleichzeitig Einführungen in die Topologie (Fundamentalgruppe, Überlagerungen, Flächen), in die algebraische Geometrie (Kurven und ihre Singularitäten) und in die Potentialtheorie (Perron-Prinzip).
Die 2. Auflage wurde um eine genauere Betrachtung des Kleinschen 14-Ecks, ein Kapitel über die de Rhamsche Cohomologie und einen Paragraphen über die Lösung nicht-linearer Gleichungen der Mathematischen Physik mittels Riemannscher Thetafunktionen ergänzt.

Caracteristici

Fundierte Darstellung der Theorie Riemannscher Flächen Zusätzlich mit Einführungen in die Topologie, Geometrie, Potentialtheorie Zahlreiche Abbildungen und Beispiele Bisher einziges deutschsprachiges Lehrbuch mit sehr gut dargestelltem flächentopologischen Teil Jetzt in 2., ergänzter und verbesserter Auflage