Ring Theory And Algebraic Geometry
Editat de A. Granja, J.A. Hermida Alonso, A Verschorenen Limba Engleză Hardback – 8 mai 2001
Preț: 1462.53 lei
Preț vechi: 1970.86 lei
-26% Nou
Puncte Express: 2194
Preț estimativ în valută:
279.98€ • 287.95$ • 232.28£
279.98€ • 287.95$ • 232.28£
Comandă specială
Livrare economică 29 ianuarie-12 februarie
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780824705596
ISBN-10: 0824705599
Pagini: 362
Dimensiuni: 178 x 254 x 17 mm
Greutate: 0.59 kg
Ediția:New.
Editura: CRC Press
Colecția CRC Press
ISBN-10: 0824705599
Pagini: 362
Dimensiuni: 178 x 254 x 17 mm
Greutate: 0.59 kg
Ediția:New.
Editura: CRC Press
Colecția CRC Press
Public țintă
ProfessionalCuprins
1. Frobenius and Maschke Type Theorems for Doi-Hopf Modules and Entwined Modules Revisited: A Unified Approach 2. Computing the Gelfand-Kirillov Dimension II 3. Some Problems About Nilpotent Lie Algebras 4. On L*-Triples and Jordan H*-Pairs 5. Toric Mathematics from Semigroup Viewpoint 6. Canonical Forms for Linear Dynamical Systems over Commutative Rings: The Local Case 7. An Introduction to Janet Bases and Grobner Bases 8. Invariants of Coalgebras 9. Multiplication Objects 10. Krull-Schmidt Theorem and Semilocal Endormorphism Rings 11. On Suslin's Stability Theorem for R[x1,..,xm] 12. Characterization of Rings Using Socle-Fine and Radical-Fine Notions 13. About Bernstein Algebras 14. About an Algorithm of T. Oaku 15. Minimal Injective Resolutions: Old and New 16. Special Divisors of Blowup Algebras 17. Existence of Euler Vector Fields for Curves with Binomial Ideal 18. An Amitsur Cohomology Exact Sequence for Involutive Brauer Groups of the Second Kind 19. Computation of the Slopes of a D-Module of Type D'/N 20. Symmetric Closed Categories and Involutive Brauer Groups
Notă biografică
Granja\, A.; Alonso\, J.A. Hermida; Verschoren\, A
Descriere
This book focuses on the interaction between algebra and algebraic geometry, including high-level research papers and surveys. It describes abelian groups and lattices, algebras and binomial ideals, cones and fans, simplicial and cellular complexes, polytopes, and arithmetics.