Risk Theory: The Stochastic Basis of Insurance: Ettore Majorana International Science Series, cartea 1
Autor E. Bearden Limba Engleză Paperback – 13 noi 2013
Din seria Ettore Majorana International Science Series
- Preț: 396.02 lei
- 18% Preț: 794.39 lei
- Preț: 403.37 lei
- Preț: 407.98 lei
- Preț: 406.25 lei
- 5% Preț: 370.74 lei
- 5% Preț: 1098.99 lei
- Preț: 416.82 lei
- Preț: 410.88 lei
- 15% Preț: 636.94 lei
- Preț: 429.32 lei
- Preț: 386.00 lei
- Preț: 401.03 lei
- Preț: 399.12 lei
- Preț: 390.84 lei
- Preț: 402.38 lei
- Preț: 398.35 lei
- 15% Preț: 655.78 lei
- 18% Preț: 931.56 lei
- Preț: 397.76 lei
- 5% Preț: 386.66 lei
- Preț: 375.62 lei
- Preț: 382.36 lei
- Preț: 394.12 lei
- 15% Preț: 650.04 lei
- Preț: 402.38 lei
- Preț: 400.85 lei
- 15% Preț: 656.43 lei
- 18% Preț: 1219.94 lei
- Preț: 390.84 lei
- Preț: 392.37 lei
- Preț: 406.42 lei
- Preț: 376.04 lei
- Preț: 435.87 lei
- 5% Preț: 388.84 lei
- 18% Preț: 1226.24 lei
- Preț: 419.14 lei
- 5% Preț: 1422.31 lei
- Preț: 410.88 lei
- Preț: 392.37 lei
- 5% Preț: 383.55 lei
- 15% Preț: 660.68 lei
- Preț: 397.97 lei
- Preț: 407.78 lei
- Preț: 401.42 lei
Preț: 381.21 lei
Nou
Puncte Express: 572
Preț estimativ în valută:
72.96€ • 75.89$ • 61.14£
72.96€ • 75.89$ • 61.14£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789400957831
ISBN-10: 9400957831
Pagini: 216
Ilustrații: XVI, 195 p. 19 illus.
Dimensiuni: 140 x 216 x 11 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Ettore Majorana International Science Series
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9400957831
Pagini: 216
Ilustrații: XVI, 195 p. 19 illus.
Dimensiuni: 140 x 216 x 11 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Ettore Majorana International Science Series
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Definitions and Notations.- 1.1 The Purpose of the Theory of Risk.- 1.2 Random Processes in General.- 1.3. Positive and Negative Risk Sums.- 1.4. Main Problems.- 2. Process with Constant Size of One Claim.- 2.1. Introduction.- 2.2. The Poisson Process.- 2.3. Discussion of Assumptions.- 2.4. Numerical Calculations.- 2.5. Application 1.- 2.6. Application 2.- 3. Generalized Poisson Distribution.- 3.1. The Distribution Function of the Size of a Claim.- 3.2. Generalized Poisson Function.- 3.3. The Mean and Standard Deviation of F(x).- 3.4. Characteristic Function.- 3.5. Estimation of S(z).- 3.6. Decomposition of S(z).- 4. Normal Approximation and Edgeworth Series for F(x).- 4.1. The Normal Approximation.- 4.2. Edgeworth Series.- 4.3. Normal Power Expansion.- 4.4. The Accuracy of the Normal Approximation.- 5. Applications of the Normal Approximation.- 5.1. The Basic Equation.- 5.2. Net Retention.- 5.3. Reserve Funds.- 5.4. Statutory Basis of Reserve Funds.- 5.5. The Rule of Greatest Retention.- 5.6. The Case of Several M’s.- 5.7. An Application to Insurance Statistics.- 5.8. Experience Rating, Credibility Theory.- 6. The Esscher Approximation.- 6.1. Introduction.- 6.2. The Accuracy of the Esscher Formula.- 6.3. Some Hints for Numerical Computations.- 6.4. Examples of Numerical Applications.- 7. Monte Carlo Method.- 7.1. Random Numbers.- 7.2. Simulation of Generalized Poisson Function.- 7.3. Discussion on the Accuracy and a Modification.- 8. Other Methods of Calculating the Generalized Poisson Function.- 8.1. Inversion of the Characteristic Function.- 8.2. A Modification of the Esscher Method.- 8.3. Step Function Approximation of S(z).- 8.4. Exponent Polynomials.- 8.5. Mixed Methods.- 8.6. Statistical Method.- 9. Variance as a Measure of Stability.- 9.1. Optimum Form ofReinsurance.- 9.2. Reciprocity of Two Companies.- 10. Varying Basic Probabilities.- 10.1. Introduction.- 10.2. Compound Poisson Process.- 10.3. Direct Numerical Computation of the Compound Poisson Function.- 10.4. The Polya Process.- 10.5. Application to Stop Loss Reinsurance.- 11. The Ruin Probability During a Finite Time Period.- 11.1. The Ruin Function in Finite Time Periods.- 11.2. Calculation of ?N(U) by a Monte Carlo Method.- 12. The Ruin Probability During an Infinite Time Period.- 12.1. Introduction.- 12.2. Ruin Probability.- 12.3. Applications.- 12.4. Some Approximation Formulae.- 12.5. Discussion on the Different Methods.- 13. Application of Risk Theory to Business Planning.- Appendix A. Derivation of the Poisson Process and Compound Poisson Processes.- Appendix B. The Edgeworth Expansion.- Solutions to the Exercises.- Author Index.