Schülkes Tafeln: Funktionswerte Zahlenwerte Formeln
Autor Helmut Wunderling, Hartmut Adelsbergerde Limba Germană Paperback – 12 dec 2000
Preț: 419.82 lei
Nou
Puncte Express: 630
Preț estimativ în valută:
80.39€ • 82.92$ • 66.62£
80.39€ • 82.92$ • 66.62£
Carte tipărită la comandă
Livrare economică 21 februarie-07 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783519325505
ISBN-10: 3519325500
Pagini: 84
Ilustrații: II, 85 S.
Dimensiuni: 170 x 244 x 7 mm
Greutate: 0.45 kg
Ediția:59., durchges. Aufl. 2000
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany
ISBN-10: 3519325500
Pagini: 84
Ilustrații: II, 85 S.
Dimensiuni: 170 x 244 x 7 mm
Greutate: 0.45 kg
Ediția:59., durchges. Aufl. 2000
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany
Public țintă
Upper undergraduateCuprins
Umrechnungen.- Konstanten.- Die Logarithmen von 1000 ? 1099 5stellig, von 100 ? 499 4stellig.- lg sin 0° ? lg sin 45° Für kleine Winkel 0° < ? < 3,2° s. Hinweis auf U2.- sin 0 sin 45°.- tan 0° ? tan 45°.- Bogenlängen, Kreisumfang und -inhalt, ?n, 3?n.- Kreis- und Hyperbelfunktionen, e x , e -x , In x.- e -x2, Gauß-Verteilung G (0; 1; x).- Binomialzahlen % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % qhaaWcbaGaam4Aaaqaaiaad6gaaaaakiaawIcacaGLPaaacqGH9aqp % daqadaqaamaaDaaaleaacaWGUbGaeyOeI0Iaam4Aaaqaaiaad6gaaa % aakiaawIcacaGLPaaacaGG6aGaeyypa0ZaaSaaaeaacaWGUbGaamiB % aaqaaiaadUgacaWGSbGaaiikaiaad6gacqGHsislcaWGRbGaaiykai % aadYgaaaaaaa!4AD3! $$ \left( {_k^n} \right) = \left( {_{n - k}^n} \right): = \frac{{nl}}{{kl(n - k)l}} $$ .- Bernoulli (Binomial)-Verteilung B (n;p;x):= % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaDa % aaleaacaWG4baabaGaamOBaaaakiaacMcacaWGWbWaaWbaaSqabeaa % caWG4baaaOGaamyCamaaCaaaleqabaGaamOBaiabgkHiTiaadIhaaa % GccaGG7aGaamiCaiabgUcaRiaadghacqGH9aqpcaaIXaaaaa!44F4!! $$ (_x^n){p^x}{q^{n - x}};p + q = 1 $$ .- Bernoulli (Binom.)-Vert. kumul. % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr %4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaaca % WGcbGaaiikaiaad6gacaGG6aGaamiCaiaacUdacaWGPbGaaiykaiab % g2da9maaqahabaGaaiikamaaDaaaleaacaWGQbaabaGaamOBaaaaki % aacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamiEaaqdcqGHris5 % aaWcbaGaamyAaiabg2da9iaaicdaaeaacaWG4baaniabggHiLdGcca % WGWbWaaWbaaSqabeaacaWGPbaaaOGaeyyXICTaamyCamaaCaaaleqa % baGaamOBaiabgkHiTiaadMgaaaaaaa!5518! $$ \sum\limits_{i = 0}^x {B(n:p;i) = \sum\limits_{i = 0}^x {(_j^n)} } {p^i} \cdot {q^{n - i}} $$ .- Poisson-Verteilung % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI % cacqaH8oqBcaGG7aGaamiEaiaacMcacaGG6aGaeyypa0ZaaSaaaeaa % cqaH8oqBdaahaaWcbeqaaiaadIhaaaaakeaacaWG4bGaamiBaaaaca % WGLbWaaWbaaSqabeaacqGHsislcqaH8oqBaaaaaa!45FA! $$ P(\mu ;x): = \frac{{{\mu ^x}}}{{xl}}{e^{ - \mu }} $$ .- Potenzen und Fakultäten Fortsetzung Tafel 13: Poisson-Verteilung.- ? 2-Verteilung kumulativ.- Allgemeine Sterbetafel 1983/85 (Bundesgebiet einschl. Berlin West).- Deutsche Sterbetafeln v. 1871/80 bis 1970/72 in verkürzter Form.- Zinseszins.- Nomogramme für Exponential- und Potenzfunktionen.- Physikalische Größen und Konstanten.- Atomphysikalische Tabellen.- Sternzeit, Deklination der Sonne, Zeitgleichung.- Die Lage einiger Orte, Sternwarten (S) und Flugplätze (F).- Astronomische Konstanten.- Mathematische Formeln und Sätze.
Notă biografică
Studiendirektor Helmut Wunderling, Berlin
Oberstudienrat Hartmut Adelsberger, Berlin
Oberstudienrat Hartmut Adelsberger, Berlin
Textul de pe ultima copertă
Die Schülkeschen Tafeln haben sich seit ihrem ersten Erscheinen im Jahre 1895 einen festen Platz unter den Hilfsmitteln des mathematischen und naturwissenschaftlichen Unterrichts erworben. Seither unterliegen sie einer laufenden Überprüfung, Erneuerung und Erweiterung.
Caracteristici
Die (seit 1895) bewährten Tafeln (Formelsammlung) für den mathematisch-naturwissenschaftlichen Unterricht