Cantitate/Preț
Produs

Séminaire de Probabilités XLVIII: Lecture Notes in Mathematics, cartea 2168

Editat de Catherine Donati-Martin, Antoine Lejay, Alain Rouault
en Limba Engleză Paperback – 28 noi 2016
In addition to its further exploration of the subject of peacocks, introduced in recent Séminaires de Probabilités, this volume continues the series’ focus on current research themes in traditional topics such as stochastic calculus, filtrations and random matrices. Also included are some particularly interesting articles involving harmonic measures, random fields and loop soups. The featured contributors are Mathias Beiglböck, Martin Huesmann and Florian Stebegg, Nicolas Juillet,  Gilles Pags, Dai Taguchi, Alexis Devulder,  Mátyás Barczy and Peter Kern,  I. Bailleul, Jürgen Angst and Camille Tardif,  Nicolas Privault, Anita Behme, Alexander Lindner and Makoto Maejima, Cédric Lecouvey and Kilian Raschel, Christophe Profeta and Thomas Simon, O. Khorunzhiy and Songzi Li, Franck Maunoury,  Stéphane Laurent,  Anna Aksamit and Libo Li, David Applebaum, and Wendelin Werner.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 69333 lei

Preț vechi: 81567 lei
-15% Nou

Puncte Express: 1040

Preț estimativ în valută:
13270 13794$ 10992£

Carte tipărită la comandă

Livrare economică 04-18 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319444642
ISBN-10: 3319444646
Pagini: 511
Ilustrații: VIII, 503 p. 23 illus., 4 illus. in color.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.72 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Mathematics, Séminaire de Probabilités

Locul publicării:Cham, Switzerland

Cuprins

Mathias Beiglböck, Martin Huesmann and Florian Stebegg: Root to Kellerer.- Nicolas Juillet: Peacocks Parametrised by a Partially Ordered Set.- Convex order for path-dependent derivatives: a dynamic programming approach.- Dai Taguchi: Stability problem for one-dimensional stochastic differential equations with discontinuous drift.- Alexis Devulder: The Maximum of the Local Time of a Diffusion Process in a Drifted Brownian Potential.- Mátyás Barczy and Peter Kern: A link between Bougerol’s identity and a formula due to Donati-Martin, Matsumoto and Yor.- Ismal Bailleul: Large deviation principle for bridges of sub-Riemannian diffus ion processes.- Jürgen Angst and Camille Tardif: Dévissage of a Poisson boundary under equivariance and regularity conditions.- Nicolas Privault: Weitzenböck and Clark-Ocone decompositions for differential forms on the space of normal martingales.- Anita Behme, Alexander Lindner and Makoto Maejima: On the range of exponential
functionals of Lévy processes.- Cédric Lecouvey and Kilian Raschel: t-Martin boundary of killed random walks in the quadrant.- Christophe Profeta and Thomas Simon: On the harmonic measure of stable processes.- Oleskiy Khorunzhiy: On High Moments of Strongly Diluted Large Wigner Random Matrices.- Songzi Li: Dyson processes on the octonion algebra.- Franck Maunoury: Necessary and sufficient conditions for the existence of a-determinantal processes.- Stéphane Laurent: Filtrations of the erased-word processes.- Anna Aksamit and Libo Li: Projections, pseudo-stopping times and the immersion property.- David Applebaum: Stationary Random Fields on the Unitary Dual of a Compact Group.- Wendelin Werner: On the spatial Markov property of soups of unoriented and oriented loops.

Textul de pe ultima copertă

In addition to its further exploration of the subject of peacocks, introduced in recent Séminaires de Probabilités, this volume continues the series’ focus on current research themes in traditional topics such as stochastic calculus, filtrations and random matrices. Also included are some particularly interesting articles involving harmonic measures, random fields and loop soups. The featured contributors are Mathias Beiglböck, Martin Huesmann and Florian Stebegg, Nicolas Juillet,  Gilles Pags, Dai Taguchi, Alexis Devulder,  Mátyás Barczy and Peter Kern,  I. Bailleul, Jürgen Angst and Camille Tardif,  Nicolas Privault, Anita Behme, Alexander Lindner and Makoto Maejima, Cédric Lecouvey and Kilian Raschel, Christophe Profeta and Thomas Simon, O. Khorunzhiy and Songzi Li, Franck Maunoury,  Stéphane Laurent,  Anna Aksamit and Libo Li, David Applebaum, and Wendelin Werner. 

Caracteristici

Provides a broad insight into current, high level research in probability theory Continues the exploration of the subject of peacocks from previous volumes Includes new material on harmonic measures, random fields and loop soups