Smooth Ergodic Theory for Endomorphisms: Lecture Notes in Mathematics, cartea 1978
Autor Min Qian, Jian-Sheng Xie, Shu Zhuen Limba Engleză Paperback – 2 sep 2009
Din seria Lecture Notes in Mathematics
- 17% Preț: 360.42 lei
- Preț: 119.36 lei
- Preț: 452.22 lei
- Preț: 175.68 lei
- Preț: 197.00 lei
- Preț: 279.76 lei
- Preț: 477.65 lei
- 17% Preț: 361.88 lei
- Preț: 252.37 lei
- Preț: 348.09 lei
- Preț: 138.88 lei
- Preț: 152.61 lei
- Preț: 116.67 lei
- Preț: 102.77 lei
- Preț: 119.02 lei
- 17% Preț: 365.52 lei
- Preț: 396.75 lei
- 17% Preț: 362.12 lei
- Preț: 396.11 lei
- Preț: 357.78 lei
- 17% Preț: 362.31 lei
- Preț: 403.80 lei
- 17% Preț: 361.70 lei
- Preț: 491.51 lei
- Preț: 449.38 lei
- Preț: 395.90 lei
- Preț: 177.41 lei
- Preț: 416.91 lei
- Preț: 479.40 lei
- Preț: 479.40 lei
- Preț: 325.04 lei
- Preț: 320.31 lei
- Preț: 344.45 lei
- Preț: 325.78 lei
- Preț: 401.54 lei
- Preț: 322.79 lei
- Preț: 414.21 lei
- Preț: 271.40 lei
- Preț: 417.49 lei
- Preț: 414.97 lei
- Preț: 496.52 lei
- Preț: 414.97 lei
- Preț: 270.27 lei
- Preț: 329.57 lei
- Preț: 415.20 lei
- Preț: 489.15 lei
- Preț: 268.18 lei
- Preț: 420.87 lei
- Preț: 369.92 lei
- Preț: 419.96 lei
Preț: 381.84 lei
Nou
Puncte Express: 573
Preț estimativ în valută:
73.11€ • 76.13$ • 60.66£
73.11€ • 76.13$ • 60.66£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642019531
ISBN-10: 3642019536
Pagini: 300
Ilustrații: XIII, 277 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.42 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642019536
Pagini: 300
Ilustrații: XIII, 277 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.42 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Preliminaries.- Margulis-Ruelle Inequality.- Expanding Maps.- Axiom A Endomorphisms.- Unstable and Stable Manifolds for Endomorphisms.- Pesin#x2019;s Entropy Formula for Endomorphisms.- SRB Measures and Pesin#x2019;s Entropy Formula for Endomorphisms.- Ergodic Property of Lyapunov Exponents.- Generalized Entropy Formula.- Exact Dimensionality of Hyperbolic Measures.
Recenzii
From the reviews:
“In the useful monograph under review the authors intend to assemble several topics in the classic ergodic theory of deterministic endomorphisms gathering the most important results available until the present time. … should be of interest to mathematicians, postgraduate students and physicists working on this field.” (Mário Bessa, Mathematical Reviews, Issue 2010 m)
“In the useful monograph under review the authors intend to assemble several topics in the classic ergodic theory of deterministic endomorphisms gathering the most important results available until the present time. … should be of interest to mathematicians, postgraduate students and physicists working on this field.” (Mário Bessa, Mathematical Reviews, Issue 2010 m)
Textul de pe ultima copertă
This volume presents a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms, mainly concerning the relations between entropy, Lyapunov exponents and dimensions.
The authors make extensive use of the combination of the inverse limit space technique and the techniques developed to tackle random dynamical systems. The most interesting results in this book are (1) the equivalence between the SRB property and Pesin’s entropy formula; (2) the generalized Ledrappier-Young entropy formula; (3) exact-dimensionality for weakly hyperbolic diffeomorphisms and for expanding maps. The proof of the exact-dimensionality for weakly hyperbolic diffeomorphisms seems more accessible than that of Barreira et al. It also inspires the authors to argue to what extent the famous Eckmann-Ruelle conjecture and many other classical results for diffeomorphisms and for flows hold true.
After a careful reading of the book, one can systematically learn the Pesin theory for endomorphisms as well as the typical tricks played in the estimation of the number of balls of certain properties, which are extensively used in Chapters IX and X.
The authors make extensive use of the combination of the inverse limit space technique and the techniques developed to tackle random dynamical systems. The most interesting results in this book are (1) the equivalence between the SRB property and Pesin’s entropy formula; (2) the generalized Ledrappier-Young entropy formula; (3) exact-dimensionality for weakly hyperbolic diffeomorphisms and for expanding maps. The proof of the exact-dimensionality for weakly hyperbolic diffeomorphisms seems more accessible than that of Barreira et al. It also inspires the authors to argue to what extent the famous Eckmann-Ruelle conjecture and many other classical results for diffeomorphisms and for flows hold true.
After a careful reading of the book, one can systematically learn the Pesin theory for endomorphisms as well as the typical tricks played in the estimation of the number of balls of certain properties, which are extensively used in Chapters IX and X.
Caracteristici
Includes supplementary material: sn.pub/extras